Compound Heterozygosity for Hb S and a Novel Deletion of Dnase I Hypersensitivity Sites HS3 and HS4 of β-Globin Locus Control Region Results in Hb S/β+-Thalassemia Phenotype

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2692-2692
Author(s):  
Ali Amid ◽  
Barry Eng ◽  
Betty-Ann Hohenadel ◽  
Meredith Hanna ◽  
Lisa N. Nakamura ◽  
...  

Abstract Sickle cell disease (SCD) is most often due to homozygosity for the hemoglobin sickle (Hb S) missense mutation of the β-globin gene (HBB:c.20A>T). SCD can also result from compound heterozygosity for Hb S and other β-chain variants or β-thalassemia (β-thal). Loss-of-function point mutations of the β-globin gene that abolish (β0) or reduce (β+) production of normal β-chains are the most common cause of β-thal, with a minority of alleles being larger deletions. Patients with Hb S/β0-thal typically have severe SCD, whereas residual β-chain synthesis in Hb S/β+-thal is associated with lower hemoglobin S concentrations and less severe disease. It has long been recognized that the high-level production of β-like chains throughout development is controlled by a cis regulatory element, the β-globin locus control region (βLCR). The βLCR is located 5.7 kb to 21.2 kb upstream of the ε-globin gene, and consists of five DNase I hypersensitivity sites designated HS1 through HS5. Twelve naturally occurring βLCR deletions have been reported, most resulting in complete loss of expression of the β-like genes and a carrier phenotype that resembles (εγδβ)0-thal. In these patients, neonatal hemolytic anemia is common due to impaired γ-chain synthesis required for Hb F. Once the γ→β switch has occurred during the first six months of infancy, the phenotype resolves to one of thalassemia trait with normal Hb A2. While the phenotype is well established for carriers of large deletions that remove all or most of the HS regions, the contribution of individual HS regions to β-globin gene expression in human has yet to be elucidated. To this end, it is important to identify and characterize naturally occurring deletions that involve individual HS regions or combinations thereof. Here, we report a case of SCD due to a novel βLCR deletion involving only HS3 and HS4. The proband is a 6-year old boy born to healthy non-sanguineous parents of Caribbean decent. Newborn screening was negative for SCD, with the Hb profile being consistent with Hb S trait (Hb F 79.1%, Hb A 6.0%, Hb S 4.0%, Hb Bart’s 9.1%). Postnatally there was no significant jaundice or clinically diagnosed anemia. The proband had no clinical complaints and growth and development were normal until age 5 years when he was diagnosed with SCD during an admission for unexplained abdominal pain and an enlarged spleen. He was noted to have microcytic anemia (Hb 87 g/L, MCV 68.2 fL), and the peripheral blood smear showed sickle cells, Howell-Jolly bodies and target cells. The Hb profile was suggestive of Hb S/β+-thal with 19.4% Hb A, 72.7% Hb S, and Hb A2 within normal range. He has had one vasoocclusive event since the diagnosis and had tonsillectomy for obstructive sleep apnea. Nucleotide sequence analysis demonstrated that the proband is heterozygous for the Hb S mutation (HBB:c.20A>T) with no other mutations of the β-globin gene. He was also shown to be heterozygous for the 3.7 kb α-globin gene deletion (-α3.7/αα). As this genotype does not explain the reduced expression of Hb A and SCD phenotype, we investigated the possibility of compound heterozygosity for Hb S and a βLCR deletion. Multiplex ligation-dependent probe amplification (MLPA) (MRC-Holland) demonstrated the presence of a novel deletion encompassing HS3 and HS4. Sequence analysis of the junction fragment established that the deletion spans a total of 4,860 bp (HGVS nomenclature NG_000007.3:g.8510_13369del). To date, this is the smallest reported βLCR deletion that is associated with a clinically significant phenotype. Our patient had milder clinical picture with no SCD-related symptoms until 5 years of age and absence of a clinically significant hemolytic anemia at birth. The presence of 19.4% Hb A was compatible with the phenotype of Hb S/β+-thal. This indicates that deletions involving only HS3 and HS4 are associated with a significant but not complete reduction of β-globin gene expression. Interestingly, the newborn screening profile was typical of sickle trait, leading to the important observation that the βLCR is not required for the low level β-globin gene expression at birth, and providing further insight into the function of βLCR and its contribution to γ→β switching in humans. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5485-5485
Author(s):  
Eleni Papanikolaou ◽  
Maria Georgomanoli ◽  
Nicholas P. Anagnou

Abstract Lentiviral vectors for γ-globin genes are being developed as an efficient tool for the gene therapy of β-chain hemoglobinopathies. The γ-globin gene has been chosen as a therapeutic gene based on the potent anti-sickling properties of γ-globins and on their ability to bind free α-chains. However, their development has been hampered by low titers, variable expression and gene silencing. To address these problems, we have initiated a strategy to exploit novel regulatory elements of the β-cluster conferring high level and sustained globin gene expression. To this end, we have successfully used the HPFH-2 enhancer combined with a 210 bp Aγ-globin gene promoter harboring the Greek HPFH -117 mutation and the HS-40 enhancer from the α-globin locus, in a series of oncoretrovirus vectors (Fragkos et al. Gene Ther12:1591–1600, 2005). Based on the high level of expression of the Aγ-gene (248 ± 99 % per copy of mouse α-globin) and the absence of vector silencing of these vectors and to further exploit the superior transducing efficiency of hematopoietic stem cells by lentiviral vectors, in the present study we have generated two novel self-inactivating lentiviral vectors containing the above regulatory elements. Specifically, vector GGHI contains an expression cassette for Aγ-globin gene linked to the 210 bp Aγ-gene promoter with the Greek HPFH -117 point mutation, the HS-40 enhancer at its 5′ end and the HPFH-2 enhancer at its 3′ end, as well as the cHS4 insulator in the 3′ LTR. The second vector, designated GGHI/PM is essentially similar to GGHI but carries also the MGMT-140K cDNA selectable marker under the control of PGK promoter, to enrich for genetically modified cells. Both vectors exhibited high titers of 108 TU/ml, for GGHI and 107 TU/ml, for GGH/PM. Their efficiency was tested in MEL-585 cells transduced at an MOI of 1–100 and a series of independent clones were generated. The clones were further induced to differentiate using hemin and HMBA and the level of expression of the Aγ-globin transgene was determined by Real Time PCR and by flow cytometry. Vector GGHI was expressed at 237 ± 369 % per copy of mouse α-globin with a mean copy number of 19.3 in 8 individual clones, while GGHI/PM was expressed only at 10 ± 16 % per copy of mouse α-globin, with a mean copy number of 60 in 10 individual clones of unselected cells. FACS analysis using an anti-γ-globin antibody, revealed a pancellular expression of γ-globin (mean MFI 69.7 for GGHI and mean MFI 40.15 for GGHI/PM), while there was no expression of the transgene in undifferentiated MEL-585 cells, suggesting that both vectors are erythroid-specific. Moreover, there was no sign of transgene silencing in any of the above clones. The results for the novel GGHI vector, are consistent with our previous studies and reflect a) the robust synergistic capacity of the HS-40 and HPFH-2 elements to enhance transcription, b) the ability of HPFH-2 to reduce the rate of gene silencing and c) the ability of the -117 point mutation to support the Aγ-globin gene expression in the adult erythroid environment, for the first time, in the context of lentiviral vectors. This extremely high level of expression if achieved in vivo, would clearly exceed the proposed therapeutic threshold for the β-chain hemoglobinopathies. Current studies combine their assessment on CD34+ cells from patients with β-thalassemia as well as their evaluation in vivo using the Hbthal3+/− thalassemic mouse model.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 755
Author(s):  
Nur Atikah Zakaria ◽  
Md Asiful Islam ◽  
Wan Zaidah Abdullah ◽  
Rosnah Bahar ◽  
Abdul Aziz Mohamed Yusoff ◽  
...  

Thalassemia, an inherited quantitative globin disorder, consists of two types, α– and β–thalassemia. β–thalassemia is a heterogeneous disease that can be asymptomatic, mild, or even severe. Considerable research has focused on investigating its underlying etiology. These studies found that DNA hypomethylation in the β–globin gene cluster is significantly related to fetal hemoglobin (HbF) elevation. Histone modification reactivates γ-globin gene expression in adults and increases β–globin expression. Down-regulation of γ–globin suppressor genes, i.e., BCL11A, KLF1, HBG-XMN1, HBS1L-MYB, and SOX6, elevates the HbF level. β–thalassemia severity is predictable through FLT1, ARG2, NOS2A, and MAP3K5 gene expression. NOS2A and MAP3K5 may predict the β–thalassemia patient’s response to hydroxyurea, a HbF-inducing drug. The transcription factors NRF2 and BACH1 work with antioxidant enzymes, i.e., PRDX1, PRDX2, TRX1, and SOD1, to protect erythrocytes from oxidative damage, thus increasing their lifespan. A single β–thalassemia-causing mutation can result in different phenotypes, and these are predictable by IGSF4 and LARP2 methylation as well as long non-coding RNA expression levels. Finally, the coinheritance of β–thalassemia with α–thalassemia ameliorates the β–thalassemia clinical presentation. In conclusion, the management of β–thalassemia is currently limited to genetic and epigenetic approaches, and numerous factors should be further explored in the future.


1982 ◽  
Vol 8 (2) ◽  
pp. 163-178 ◽  
Author(s):  
Devi Vembu ◽  
Neal S. Young ◽  
Marcia Willing ◽  
Eve Church ◽  
Linda Sanders-Haigh ◽  
...  

Blood ◽  
2013 ◽  
Vol 121 (17) ◽  
pp. 3493-3501 ◽  
Author(s):  
Maria Amaya ◽  
Megha Desai ◽  
Merlin Nithya Gnanapragasam ◽  
Shou Zhen Wang ◽  
Sheng Zu Zhu ◽  
...  

Key Points Mi2β exerts a major part of its silencing effect on embryonic and fetal globin genes by positively regulating the BCL11A and KLF1 genes. Partial depletion of Mi2β induces increased γ-globin gene expression in primary human erythroid cells without impairing differentiation.


2000 ◽  
Vol 20 (15) ◽  
pp. 5581-5591 ◽  
Author(s):  
Daniel M. Cimbora ◽  
Dirk Schübeler ◽  
Andreas Reik ◽  
Joan Hamilton ◽  
Claire Francastel ◽  
...  

ABSTRACT DNA replication in the human β-globin locus is subject to long-distance regulation. In murine and human erythroid cells, the human locus replicates in early S phase from a bidirectional origin located near the β-globin gene. This Hispanic thalassemia deletion removes regulatory sequences located over 52 kb from the origin, resulting in replication of the locus from a different origin, a shift in replication timing to late S phase, adoption of a closed chromatin conformation, and silencing of globin gene expression in murine erythroid cells. The sequences deleted include nuclease-hypersensitive sites 2 to 5 (5′HS2-5) of the locus control region (LCR) plus an additional 27-kb upstream region. We tested a targeted deletion of 5′HS2-5 in the normal chromosomal context of the human β-globin locus to determine the role of these elements in replication origin choice and replication timing. We demonstrate that the 5′HS2-5-deleted locus initiates replication at the appropriate origin and with normal timing in murine erythroid cells, and therefore we conclude that 5′HS2-5 in the classically defined LCR do not control replication in the human β-globin locus. Recent studies also show that targeted deletion of 5′HS2-5 results in a locus that lacks globin gene expression yet retains an open chromatin conformation. Thus, the replication timing of the locus is closely correlated with nuclease sensitivity but not globin gene expression.


1991 ◽  
Vol 11 (9) ◽  
pp. 4690-4697 ◽  
Author(s):  
J G Glauber ◽  
N J Wandersee ◽  
J A Little ◽  
G D Ginder

A stable transfection assay was used to test the mechanism by which embryonic globin gene transcription is stimulated in adult erythroid cells exposed to butyric acid and its analogs. To test the appropriate expression and inducibility of chicken globin genes in murine erythroleukemia (MEL) cells, an adult chicken beta-globin gene construct was stably transfected. The chicken beta-globin gene was found to be coregulated with the endogenous adult mouse alpha-globin gene following induction of erythroid differentiation of the transfected MEL cells by incubation with either 2% dimethyl sulfoxide (DMSO) or 1 mM sodium butyrate (NaB). In contrast, a stably transfected embryonic chicken beta-type globin gene, rho, was downregulated during DMSO-induced MEL cell differentiation. However, incubation with NaB, which induces MEL cell differentiation, or alpha-amino butyrate, which does not induce differentiation of MEL cells, resulted in markedly increased levels of transcription from the stably transfected rho gene. Analysis of histone modification showed that induction of rho gene expression was not correlated with increased bulk histone acetylation. A region of 5'-flanking sequence extending from -569 to -725 bp upstream of the rho gene cap site was found to be required for both downregulation of rho gene expression during DMSO-induced differentiation and upregulation by treatment with NaB or alpha-amino butyrate. These data are support for a novel mechanism by which butyrate compounds can alter cellular gene expression through specific DNA sequences. The results reported here are also evidence that 5'-flanking sequences are involved in the suppression of embryonic globin gene expression in terminally differentiated adult erythroid cells.


Sign in / Sign up

Export Citation Format

Share Document