Targeting KLF1 for the Treatment of Sickle Cell Disease Using Antisense Oligonucleotides

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4038-4038
Author(s):  
Raechel Peralta ◽  
Audrey Low ◽  
Sheri Booten ◽  
Dewang Zhou ◽  
Aneeza Kim ◽  
...  

Abstract Sickle cell anemia (SCD) is a hereditary blood disorder in which red blood cells (RBC) become sickle-shaped and block blood vessels, leading to painful vaso-occlusive episodes. Sickling occurs because of a point-mutation in the β-globin gene of hemoglobin. Fetal hemoglobin (HbF, α2γ2) is the main oxygen transport protein in the fetus during the last months of embryonic development and the first few months of life after birth. HbF has a slightly greater oxygen binding affinity than adult hemoglobin (HbA, α2β2) and inhibits sickling by interfering with the polymerization of hemoglobin S. Higher HbF levels in SCD correlate with better survival and because HbF production can be reactivated pharmacologically in adults, it can be used for the treatment of SCD. Erythroid Kruppel-like factor (KLF1) is an erythroid-specific transcription factor that regulates β-globin expression through direct interaction with its promoter and indirectly regulates γ-globin expression through the regulation of BCL11A. By reducing the expression of KLF1, we can promote production of HbF through the upregulation of γ-globin expression. Since rodents don’t express γ-globin, we have employed both human and engineered mouse cell lines to demonstrate upregulation of γ-globin mRNA expression in vitro. We used MEL-h-b-BAC line#7 cells, a murine erythroleukemic cell line harboring the entire human beta globin locus and expressing mouse KLF1, and treated with antisense oligonucleotides (ASOs) targeting mouse KLF1. After 7 days of free uptake with the ASOs, we observed a 6-fold increase of human γ-globin mRNA expression after achieving 65% mRNA reduction of mouse KLF1 compared to the untreated control. We were also able to demonstrate significant upregulation of human γ-globin protein expression in these cells by western blot. We have shown similar results in a human erythroleukemia cell line, K562, using ASOs targeting human KLF1. K562 cells were electroporated with the KLF1 ASOs and 4 days later, we observed a 5-fold increase of human γ-globin mRNA expression after achieving 40% mRNA reduction of human KLF1 compared to the untreated control. These data indicate that targeting mouse or human KLF1 with ASO treatment can cause an increase in human γ-globin expression in vitrothat is necessary for the upregulation of fetal hemoglobin. We have also shown that we are able to target the bone marrow in both mice and rats through subcutaneous administration of our KLF1 ASOs. In wild type mice, at a dose of 100 mpk/wk for 4 weeks, we observed KLF1 target reduction of 88% and a β-globin reduction of 58% compared to the saline control in whole bone marrow. In Sprague-Dawley rats, at a dose of 50 mpk/wk for 4 weeks, we observed KLF1 target reduction of 83% and a β-globin reduction of 77% compared to the saline control in whole bone marrow. Therefore, we are able to achieve significant β-globin mRNA reduction in the bone marrow in both mice and rats after subcutaneous administration of KLF ASOs. These data indicate that reducing KLF1 with antisense oligonucleotides is a viable option for the treatment of sickle cell anemia. Disclosures Peralta: Isis Pharmaceuticals, Inc.: Employment. Low:Isis Pharmaceuticals, Inc.: Employment. Booten:Isis Pharmaceuticals, Inc.: Employment. Zhou:Univeristy of Alabama at Birmingham: Employment. Kim:Isis Pharmaceuticals, Inc.: Employment. Freier:Isis Pharmaceuticals, Inc.: Employment. Guo:Isis Pharmaceuticals, Inc.: Employment. Murray:Isis Pharmaceuticals, Inc.: Employment. Townes:University of Alabama at Birmingham: Employment. Hung:Isis Pharmaceuticals, Inc.: Employment.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1022-1022 ◽  
Author(s):  
Raechel Peralta ◽  
Audrey Low ◽  
Aneeza Kim ◽  
Sue Murray ◽  
Shuling Guo ◽  
...  

Abstract Sickle cell anemia (SCD) is a hereditary blood disorder in which red blood cells (RBC) become sickle-shaped and block blood vessels, leading to painful vaso-occlusive episodes. Sickling occurs because of a point-mutation in the β-globin gene of hemoglobin. Fetal hemoglobin (HbF, α2γ2) is the main oxygen transport protein with greater oxygen binding affinity in the fetus during the last months of embryonic development and the first few months of life after birth. HbF inhibits sickling by interfering with the polymerization of hemoglobin S. Higher HbF levels in SCD correlate with better survival and because HbF production can be reactivated pharmacologically in adults, it can be used for the treatment of SCD as well as β-thalassemia. In β-thalassemia, there is reduced or absent synthesis of the β-globin gene, causing ineffective erythropoiesis. B-cell lymphoma/leukemia 11A (BCL11A) is a transcription factor in the zinc-finger protein family and is expressed in B cells and erythroid cells. BCL11A represses fetal hemoglobin expression by binding to the GGCCCGG motif in the β-globin promoter region. Erythroid Kruppel-like factor (KLF1) is an erythroid-specific transcription factor that regulates β-globin expression through direct interaction with its promoter and indirectly regulates γ-globin expression through the regulation of BCL11A. By reducing the expression of BCL11A and KLF1, we can promote production of HbF through the upregulation of γ-globin expression. To demonstrate upregulation of γ-globin mRNA expression in vitro, we used MEL-h-b-BAC line#7 cells, a murine erythroleukemic cell line harboring the entire human beta globin locus and expressing mouse BCL11A and KLF1 (Tim Townes, Univ. of Alabama at Birmingham). Antisense oligonucleotides (ASOs) targeting mouse BCL11A or mouse KLF1 were added to the cells in a dose-dependent manner. Seven days later, with free uptake of the ASOs into the cells, we observed dose-dependent reduction of mouse BCL11A mRNA (IC50 = 0.7 μM) and mouse KLF1 mRNA (IC50 = 3 μM). Consequently, we observed a 300 +/- 8% upregulation of human γ-globin mRNA expression after achieving ∼90% reduction in BCL11A mRNA expression after ASO treatment compared to the untreated control cells. Similarly, KLF1 ASO treatment caused a 500 +/- 58% up regulation of human γ-globin mRNA expression after achieving ∼80% mRNA reduction in KLF expression. These data indicate that targeting BCL11A and/or KLF1 with ASO treatment can cause an increase in γ-globin expression that is necessary for the upregulation of fetal hemoglobin and may be used for the treatment of sickle-cell anemia and β-thalassemia. Disclosures: Peralta: Isis Pharmaceuticals, Inc.: Employment. Low: Isis Pharmaceuticals, Inc.: Employment. Kim: Isis Pharmaceuticals, Inc.: Employment. Murray: Isis Pharmaceuticals, Inc.: Employment. Guo: Isis Pharmaceuticals, Inc.: Employment. Freier: Isis Pharmaceuticals, Inc.: Employment. Townes: University of Alabama at Birmingham: Employment. Hung: Isis Pharmaceuticals, Inc.: Employment.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3794-3794
Author(s):  
Tzu-Fang Lou ◽  
Ashley Williams ◽  
Wei Li ◽  
Betty S. Pace

Abstract Hydroxyurea (HU) has been shown to induce fetal hemoglobin (HbF) synthesis through activation of the soluble guanosine cyclase/cyclic guanosine monophosphate signaling pathway. The release of NO from HU by heme iron is thought to be involved in this mechanism of HbF induction. Studies completed in sickle cell patients confirmed increased serum NO levels after oral HU therapy but NO generation in red blood cells and the effect on γ-gene transcription have not been extensively investigated. Therefore, we performed studies to quantify NO generated by HU in K562 cells and normal erythroid progenitors as a mechanism for γ-globin activation. NO levels were measured after drug treatments using the Nitric Oxide Assay Kit (Calbiochem) and γ-globin mRNA was measured using quantitative PCR. HU (100μM) increased NO 1.4 to 1.8-fold at 24–72 hrs in K562 cells compared to a 2.0 to 2.5-fold increase in NO produced by the known NO donor, deta-nonoate (DE; 400μM). NO levels were also measured in erythroid progenitors grown in liquid cultures; a 1.6-fold increase in NO was produced by 30μM HU after 48 hrs with comparable increases produced by 200μM DE. To understand the effects of HU on normal NO synthesis from L-arginine through the action of NO synthase (NOS), we performed studies with the NOS inhibitor, NG-Monomethyl-L-arginine (L-NMMA). Interestingly, HU increased NO levels 2.5-fold at 24 hrs when combined L-NMMA compared a 1.4-fold increase produced by HU alone; this pattern persisted up to 72 hrs. Parallel with these findings γ-globin activation by HU was augmented approximately 25% by L-NMMA; DE combined with L-NMMA did not produce the same effect. These data suggest a novel mechanism for NOS regulation by HU compared to DE. Subsequent studies were completed to determine if HbF synthesis could be augmented by combining NO donors since they have different mechanisms of action. HbF levels in K562 cells were measured by ELISA (Bethyl Laboratories) and normalized by total hemoglobin and protein. Treatment with HU or DE increased HbF 3.6-fold and 4.6-fold respectively; when HU was combined with DE an additive 7.6-fold increase in HbF was produced. These data confirm that HU treatment lead to NO generation in K562 cells and normal erythroid progenitors which plays a role in its mechanism of γ-globin activation. HU combined with DE had an additive effect on HbF synthesis. These findings are relevant to current research efforts to develop novel HbF inducers for therapy in sickle cell patients.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 571-571 ◽  
Author(s):  
Donald Lavelle ◽  
Kestis Vaitkus ◽  
Virryan Banzon ◽  
Maria Hankewych ◽  
Pasit Phiasivongsva ◽  
...  

Abstract Increased fetal hemoglobin (HbF) levels can ameliorate the symptoms of patients with sickle cell disease and increase their life span. The DNA methyltransferase (DNMT) inhibitor decitabine increases HbF in non-human primates (baboons) and sickle cell patients and offers great promise as an effective therapeutic agent for the treatment of this disease. The goal of this investigation was to develop and test new compounds that inhibit DNMT, increase HbF, and offer significant advantages compared to decitabine such as increased stablity, reduced cytotoxicity, and a lower potential for mutagenicity. S110 is decitabine-guanine dinucleotide developed by Supergen, Inc., that is cytosine deaminase resistant and more stable in plasma than decitabine. Experiments were performed to compare the effect of S110 and decitabine on γ-globin expression in human erythroid progenitor cell cultures derived from CD34+ peripheral blood cells. Cultures were treated with decitabine (1 X 10−6 M) or S110 (1 and 5 X 10−6 M) on day 8. Forty eight hours later, RNA was purified for real time PCR analysis of ε- and γ-globin gene expression by the ΔΔCT method using α-globin as a control. Effects on globin polypeptide chain expression was determined by HPLC analysis of freeze-thaw lysates prepared 72 hours following drug addition. Both S110 and decitabine increased expression of ε-globin and γ-globin mRNA and the γ/γ + β polypeptide chain ratio (see Table). Effect of S110 on ε-and γ-globin mRNA and the γ / γ + β chain ratio in Human Erythroid Progenitor Cultures (n=4) DRUG CONCENTRATION ε-globin mRNA (Fold increase) γ-globin mRNA (Fold increase) Globin chain ratio (γ/γ + β) Untreated 3 +/− 3.3 Decitabine 1 X 10-6 M 3 +/− 24.8 2 +/− 2.8 8 +/− 3.2 S110 1 x 10-6 M 5 +/− 4.2 4 +/− 1.1 8 +/− 1.9 S110 5 X 10−6 9 +/− 34.5 35 +/− 1.5 2 +/− 2.9 The effect of S110 on HbF levels in vivo was then tested in non-human primates. Two baboons (PA 7256; PA 7470, P. anubis) were phlebotomized for eight days to achieve a HCT of 20 followed by treatment with S110 (1mg/kg/d; sc) for ten days. Pretreatment HbF levels were 3.1% (PA 7256) and 3.5% (PA 7470). Following S110 treatment, peak HbF levels of 46.1% (PA 7256) and 75.5% (PA 7470) were attained that were similar to levels observed in animals treated with equivalent molar doses of decitabine. Bisulfite sequence analysis showed that the level of DNA methylation of 5 CpG sites within the γ-globin promoter in purified BM erythroblasts following S110 administration was significantly lower (41.5%, PA 7256; 16.3%, PA 7470) compared to erythroblasts from bled, untreated baboons (70.8%; n=4). Pharmacokinetics was also evaluated in parallel to assess systemic exposure. These data demonstrate that S110, a newly developed decitabine-guanine dinucleotide, effectively increased HbF and reduced DNA methylation in cultured human erythroid progenitor cells and in experimental non-human primates.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2129-2129 ◽  
Author(s):  
Ian Street ◽  
Brendon Monahan ◽  
Hendrik Falk ◽  
Elizabeth Allan ◽  
Ylva Bergman ◽  
...  

Abstract Abstract 2129 The developmental switch in human β-like globin gene subtype from fetal (γ) to adult (β) that begins at birth foreshadows the onset of the hemoglobinopathies, β-thalassemia and sickle cell disease (SCD). In the clinical setting it is established that β-thalassemia and SCD patients with hereditary persistence of fetal hemoglobin mutations enjoy a significant amelioration of disease severity due to the continued expression of γ-globin. This has prompted the search for therapeutic strategies to reverse γ-globin gene silencing. Central to the mechanism of γ-gene silencing is DNA methylation, which marks critical CpG dinucleotides flanking the γ-gene transcriptional initiation site in adult bone marrow erythroid cells. These marks are established by recruitment of DNMT3A, a DNA methyltransferase, to the γ-globin promoter by protein arginine methyltransferase 5 (PRMT5)[Zhao Q et al. Nat Struct Mol Biol. 2009;16(3):304–311]. PRMT5 catalyses the symmetric dimethylation of arginine 3 of Histone 4 (H4R3me2), which serves as a template for direct binding of DNMT3A and the subsequent DNA methylation of the γ-gene promoter. Loss of PRMT5 or its enzymatic activity is sufficient to induce demethylation of the CpG dinucleotides and reactivation of γ-globin gene expression [Rank, G., et al. Blood, 116(9), 1585–92]. Based on these observations we hypothesize that small molecule inhibitors of PRMT5 activity could provide a beneficial treatment for β-thalassemia and SCD. To identify small molecule inhibitors of PRMT5 a high throughput screen (HTS) was performed. Both radiometric and non-radiometric assay formats were developed to support the screening campaign. The radiometric assay format measures the ability of PRMT5 purified from K562 cells to catalyse the labelling of a short peptide based on the N-terminal sequence of Histone H4 by 3H-Methyl-S-Adenosyl-L-methionine (SAM). In contrast, the non-radiometric assay format employs recombinant PRMT5/MEP50 and measures the production of S-adenosyl-L-homocysteine (SAH), which is generated by PRMT5-catalysed methylation of H4 peptide. SAH is measured with Transcreener EPIGEN” and the assay is formatted in 1536-well microtitre plates in a total assay volume of 4 μL. Using these assays, a chemical library of 350,000 lead-like molecules and known pharmacologically active agents was screened to identify inhibitors of PRMT5 methyltransferase activity. A number of compounds with low micromolar or submicromolar inhibitory activity were identified by the HTS campaign, and six were selected for re-synthesis. The inhibitory activity of five of the six compounds was confirmed. To provide an initial appraisal of inhibitor selectivity the five active compounds were subsequently tested against a panel of enzymes consisting of 23 protein and DNA methyltransferases and 12 kinases. These compounds were found to be remarkably selective PRMT5 inhibitors, inhibition of MLL4 being the only significant off-target activity noted for one of the scaffolds. We have established a critical path for selection and progression of new chemical analogues which entails testing the compounds for: i) inhibition of PRMT5, other protein methyl transferases and kinases; ii) the ability to induce expression of γ-globin mRNA in the K562 erythroleukemic cell line; iii) the ability to induce expression of γ-globin mRNA in adult bone marrow erythroid cells; and iv) the induction of γ-globin in vivo in β-YAC mice, a transgenic model which carries the 250-kb human globin locus. In parallel, the physicochemical, metabolism, and pharmacokinetic properties of the most promising compounds are also determined. Medicinal chemistry efforts have now produced molecules with > 100-fold increased inhibitory potency against PRMT5 compared to the original hits, and preliminary results indicate that the more potent compounds have the ability to induce γ-globin mRNA in our cell based models. These early results illustrate the potential of PRMT5 inhibitors as a novel approach for the treatment of β-thalassemia and sickle cell disease. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 908-908
Author(s):  
Djamel Aggoune ◽  
Nathalie Sorel ◽  
Sanaa El Marsafy ◽  
Marie Laure Bonnet ◽  
Denis Clay ◽  
...  

Abstract Abstract 908 There is growing evidence that the bone marrow microenvironment could participate to the progression of chronic myeloid leukemia (CML). Recent data show indeed that placental growth factor (PGF) expression is highly induced in stromal cells from CML patients although they are not part of the leukemic clone as they are Ph1-negative (Schmidt et al, Cancer Cell 2011). It is possible that leukemic cells instruct the niche components via extracellular or contact signals, transforming progressively the “normal niche” into a functionally “abnormal niche” by inducing aberrant gene expression in these cells, similar to the pattern that has been identified in cancer-associated fibroblasts (CAF). In an effort to identify the differential gene expression pattern in the CML niche, we have undertaken two strategies of gene expression profiling using a Taqman Low Density Arrays (TLDA) protocol designed for 93 genes involved in antioxidant pathways (GPX, PRDX, SOD families), stromal cell biology (Collagen, clusterin, FGF, DHH), stem cell self-renewal (Bmi1, MITF, Sox2) and hematopoietic malignancies (c-Kit, hTERT, Dicer, beta-catenin, FOXO3). The first strategy consisted in the analysis of mesenchymal stem cells (MSCs) isolated from the bone marrow of newly diagnosed CP-CML patients (n=11). As a control, we have used MSCs isolated from the bone marrow of age-matched donors (n=3). MSCs were isolated by culturing 6–8.106 bone marrow mononuclear cells in the presence of b-FGF (1 ng/ml). At 2–3 weeks, cells were characterized by the expression of cell surface markers (CD105+, CD90+) and by their potential of differentiation towards osteoblastic, chondrocytic and adipocytic lineages. The second strategy aimed to study the potential instructive influence of leukemic cells in the gene expression program of normal MSC after co-culture with either the UT7 cell line expressing BCR-ABL (3 days) or with CD34+ cells isolated from CP-CML at diagnosis (5 days) as compared to co-culture with cord blood CD34+ cells. After culture, CD45-negative MSC were cell-sorted and analyzed by TLDA. All results were analyzed using the StatMiner software. Results: TLDA analysis of gene expression pattern of MSC from CML patients (n=11) as compared to normal MSCs (n=3) identified 6 genes significantly over-expressed in CML-MSC: PDPN (10-Fold Increase), V-CAM and MITF (∼8 Fold increase), MET, FOXO3 and BMP-1 (∼ 5 Fold increase). To confirm these results we have performed Q-RT-PCR in a cohort of CML-MSC (n= 14, including the 11 patients as analyzed in TLDA) as compared to normal MSC. High levels of PDPN (Podoplanin, ∼8 fold increase), MITF (Microphtalmia Associated Transcription factor, 4-Fold) and VCAM (Vascular Cell Adhesion Protein, 2 fold increase) mRNA were again observed on CML MSCs. Our second strategy (co-culture of normal MSC with BCR-ABL-expressing UT7) revealed an increase of IL-8 and TNFR mRNA expression in co-cultured MSCs (∼5-fold ) whereas there was a major decrease in the expression of DHH (∼ 25-fold) upon contact with BCR-ABL-expressing cells. No modification of the expression of PDPN, MITF or VCAM was noted in normal MSC after this 3-day co-culture strategy using UT7-BCR-ABL cells. Current experiments are underway to determine if primary CD34+ cells from CML patients at diagnosis could induce a specific gene expression pattern in normal MSC after 5 days of co-culture. PDPN is a glycoprotein involved in cell migration and adhesion, acting downstream of SRC. It has been shown to promote tumor formation and progression in solid tumor models and is highly expressed in CAFs. MITF is a bHLH transcription factor involved in the survival of melanocyte stem cells and metastatic melanoma. Finally, high VCAM1 mRNA expression by MSCs from CML patients could be involved in increased angiogenesis known to be present on CML microenvironment. In conclusion, our results demonstrate an abnormal expression pattern of 3 important genes (PDPN, MITF and VCAM1) in MSC isolated in CP-CML patients at diagnosis. The mechanisms leading to an increased mRNA expression (instructive or not instructive by leukemic cells) and their relevance to CML biology are under evaluation. Our results, confirming previous data, suggest strongly the existence of a molecular cross-talk between leukemic cells and the leukemic niche. The elucidation of such aberrant pathways in the microenvironment could lead to the development of “niche-targeted” therapies in CML. Disclosures: Turhan: Novartis, Bristol Myers Squibb: Honoraria, Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2596-2596
Author(s):  
Manja Wobus ◽  
Ekaterina Balaian ◽  
Uta Oelschlaegel ◽  
Russell Towers ◽  
Kristin Möbus ◽  
...  

Abstract Introduction Myelodysplastic syndromes (MDS) belong to the most common hematological neoplasms in the elderly population, characterized by ineffective hematopoiesis, peripheral cytopenia and the risk of transformation into acute myeloid leukemia. There is increasing evidence that an aberrant innate immune response and a proinflammatory bone marrow (BM) microenvironment play a critical role in the pathogenesis of MDS. The alarmin S100A9, a key player for regulation of inflammatory responses, has been shown to be elevated in MDS patients. It directs an inflammatory cell death (pyroptosis) by increased NF-kB mediated transcription and secretion of proinflammatory, hematopoiesis-inhibitory cytokines and production of reactive oxygen species. Tasquinimod (TASQ, Active Biotech) is a novel, oral small molecular drug with S100A9 inhibitory activity and it is currently investigated in a phase Ib/IIa trial in relapsed/refractory multiple myeloma (NCT04405167). TASQ has demonstrated anti-angiogenic, antitumor and immunomodulatory properties in a broad range of preclinical solid tumor models; however, little is known about its effects in myeloid malignancies. Aim We investigated the role of S100A9 in cellular models of MDS and the potential of TASQ to target S100A9 within the MDS stroma in vitro. Methods Immunohistochemical staining of S100A9, CD271+ mesenchymal stromal cells (MSCs), CD68+ macrophages and CD66b+ neutrophils in BM tissues from MDS patients and healthy donors was performed with multiplex immunohistochemistry and analyzed with the VECTRA imaging system. MSCs from patients with either low-risk MDS, CMML or age-adjusted healthy donors were exposed to S100A9 (1.5µg/ml) in the presence or absence of TASQ (10µM). Subsequently, TLR4 downstreaming molecules such as IRAK1, gasdermin and NF-kB-p65 were analyzed by Western blot. Moreover, the mRNA expression of further proinflammatory molecules (IL-1b, IL-18, caspase1) and PD-L1 was quantified by real-time PCR. To study the impact on the hematopoietic support, MSCs were pre-treated for one week with S100A9 ± TASQ before CD34+ hematopoietic stem and progenitor cells (HSPCs) were seeded on the stromal layer. The colony formation (CAF-C) was analyzed weekly followed by a CFU-GEMM assay in methylcellulose medium. Additionally, PD-1 mRNA expression was quantified in cocultured HSPCs. Results Immunohistochemical staining of BM tissue demonstrated S100A9 expression mainly by CD66b+ neutrophils and with less extent by CD68+ macrophages. In line with this, we could not detect relevant S100A9 mRNA expression in cultured MDS or healthy MSCs in vitro. Exposure of MDS and healthy MSCs with S100A9 induced TLR4 downstream signalling as demonstrated by increased expression of IRAK1 and NF-kB-p65. We further detected a higher expression of gasdermin, an inductor of pyroptosis, in S100A9 exposed MSCs. Addition of TASQ abolished these effects and inhibited the expression of the mentioned proteins, indicating an alleviation of inflammation. Furthermore, we detected a 2-fold increase of mRNA expression of the proinflammatory cytokines IL-1b and IL-18 as well as a 5-fold increase of their activator caspase 1 in MSCs after treatment with S100A9, which could be prevented by TASQ. Interestingly, PD-L1 as a potential downstream target was induced by S100A9 by 2.5-fold and could be suppressed by TASQ to about 50%. To evaluate the impact on the hematopoietic support of MSCs, we analysed MSC/HSPC cocultures after treatment with S100A9. We observed a decreased number of cobblestone area forming cells (CAF-C) as well as reduced numbers of colonies (CFU) in a subsequent clonogenic assay, indicating a disturbed hematopoietic support by S100A9 treated MSCs. Interestingly, both the number of CAF-C and CFU could be increased by TASQ pre-treatment. Finally, the PD-1 expression in co-cultured HSPCs was regulated in the same way as its ligand in treated MSCs, nominating this interaction as a potential target of S100A9/TASQ in the MDS BM. Conclusion In summary, we provide evidence that the pathological inflammasome activation in the myelodysplastic bone marrow can be rescued by TASQ at least in part by inhibition of the S100A9 mediated TLR4 downstream signalling including NF-kB-p65 transcription and PD-L1 expression. These effects result in an improved hematopoietic support by MSCs, suggesting a potential efficacy to improve cytopenia in low-risk MDS patients. Disclosures Balaian: Novartis: Honoraria. Törngren: Active Biotech: Current Employment. Eriksson: Active Biotech: Current Employment. Platzbecker: AbbVie: Honoraria; Takeda: Honoraria; Celgene/BMS: Honoraria; Novartis: Honoraria; Janssen: Honoraria; Geron: Honoraria. Röllig: Novartis: Honoraria, Research Funding; Jazz: Honoraria; Janssen: Honoraria; Bristol-Meyer-Squibb: Honoraria, Research Funding; Amgen: Honoraria; AbbVie: Honoraria, Research Funding; Pfizer: Honoraria, Research Funding; Roche: Honoraria, Research Funding.


Blood ◽  
1993 ◽  
Vol 81 (6) ◽  
pp. 1630-1635
Author(s):  
E Fibach ◽  
LP Burke ◽  
AN Schechter ◽  
CT Noguchi ◽  
GP Rodgers

Hydroxyurea (HU), an inhibitor of DNA synthesis, has been shown to increase fetal hemoglobin (HbF) levels in patients with sickle cell anemia and in some patients with beta-thalassemia. However, until now there have not been good in vitro model systems that simulate this effect for study of the molecular and cellular mechanism(s) involved in perturbing the normal ontogeny of the globin genes. We analyzed the cellular effects of HU using a two-phase liquid culture procedure (Fibach et al: Blood 73:100, 1989) in which human peripheral blood- derived progenitor cells undergo proliferation and differentiation. HU was found to have multiple effects on these cultured cells: (1) an increase in the proportion of HbF produced; (2) a decrease in cell number due to inhibition of cell proliferation; (3) an increase in hemoglobin content per cell (mean corpuscular hemoglobin [MCH]); and (4) an increase in cell size (mean corpuscular volume). The extent of these effects was related to the HU dose and time of addition. When added to cell cultures from normal individuals, 4 days following their exposure to erythropoietin (EPO), 100 mumol/L HU caused a 1.3- to 3.5- fold increase in the proportion of HbF, from 0.4% to 5.2% (mean 1.6) in untreated to 1.5% to 8.2% (mean 3.1) in HU-treated cultures and a 45% +/- 10% increase in MCH but only a 25% +/- 7% decrease in cell number on day 13. Cultures of cells derived from five patients with sickle cell anemia have shown a twofold to fivefold increase in the percentage of Hb F following addition of HU while four patients with beta- thalassemia showed a 1.3- to 6.2-fold increase. We believe that this primary cell culture procedure should prove useful in studying the cellular and molecular mechanisms of pharmacologic induction of HbF and might provide a valuable predictive assay system for evaluation of the response of individual patients with hemoglobinopathies to HU and similar agents.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 967-967
Author(s):  
Nicolas Hebert ◽  
Erica B. Esrick ◽  
Myriam Armant ◽  
Christian Brendel ◽  
Marioara Felicia Ciuculescu ◽  
...  

Abstract NH and EE equally contributed. ADW and PB co-signed. The expression of fetal hemoglobin (HbF) is one of the main targets of sickle cell disease treatment, as it inhibits the polymerization of hemoglobin S. The hypothesis of an inhibitory threshold of HbF per red blood cell (RBC) has been suggested, 1 although not well defined, as the overall percentage of HbF does not reflect the heterogeneous distribution of HbF per cell. Likewise, the qualitative analysis of RBCs containing HbF, called F cells, is neither reproducible nor clinically interpretable, due to low expression. 2 We have developed a technique for measuring the amount of HbF per cell, to determine thresholds of HbF expression per RBC correlated with clinical and biological effects. 2 Among genes controlling its expression, BCL11A has a major repressive effect on the expression of gamma globin/HbF during the fetal to adult hemoglobin switch. Post-transcriptional silencing of BCL11A, using lentivirus expression of a shRNA embedded in a microRNA architecture (shmiR) to re-activate γ-globin expression, is safe and demonstrates high levels of %HbF in a pilot clinical study (NCT 03282656). 3 Here, we show the quantitative measurement of HbF per RBC and reticulocyte. Methods: During patient follow-up, HbF quantification per single cell RBC was performed using a fluorescent HbF antibody. 2 Addition of an anti-CD71 fluorescent antibody allowed selection of reticulocyte sub-populations for determining their HbF content. Fold-increase in percentage of RBC versus percentage of reticulocyte were calculated. Kinetics of HbF/RBC and HbF/Reticulocyte were modeled using mixed effects polynomial linear regression to account for the correlation between repeated data over time. Results: With a median follow-up of 15 months [12-20] after gene transfer, figure 1 shows the mathematical modeling of single-RBC HbF measurement representing RBC percentage containing at least 2, 4, 6, 8 and 10 pg of HbF. Percentage of RBC above each threshold was higher compared to 14 hydroxyurea treated patients for 6 months. Figure 2 shows fold increase between reticulocytes and RBCs with same thresholds of HbF/cell. For low thresholds, RBCs were found in same percentage as reticulocytes whereas RBCs containing increasing levels of HbF were found in higher percentage than reticulocytes, until 6pg/cell showing a clear selective advantage for red cells with a threshold ≥ 6pg/cell of HbF. Figure 3 shows different kinetics of HbF increase according to two different transduction strategies with 2 enhancers in patients 2-4 compared to one enhancer in patients 6-8. Conclusion: BCL11A down-regulation in six clinical trial subjects was associated with an in vivo selection process RBCs with ≥ 6pg HbF per cell attained with different engraftment kinetics, depending on transduction processes, and ultimately stable high level and broadly distributed HbF. 1 Steinberg MH, Chui DH, Dover GJ, Sebastiani P, Alsultan A. Fetal hemoglobin in sickle cell anemia: a glass half full? Blood. 2014 Jan 23;123(4):481-5. 2 Hebert N, Rakotoson MG, Bodivit G, et al. Individual red blood cell fetal hemoglobin quantification allows to determine protective thresholds in sickle cell disease. Am. J. Hematol. 3 Esrick EB, Lehmann LE, Biffi A, et al. Post-Transcriptional Genetic Silencing of BCL11A to Treat Sickle Cell Disease. N. Engl. J. Med. 2021;384(3):205-215. Figure 1 Figure 1. Disclosures Esrick: bluebird bio: Consultancy. Audureau: GBT: Honoraria. Higgins: Sebia, Inc.: Honoraria; Danaher Diagnostics: Consultancy. Williams: BioMarin: Membership on an entity's Board of Directors or advisory committees, Other: Insertion Site Advisory Board; Geneception: Membership on an entity's Board of Directors or advisory committees, Other: Scientific Advisory Board; Emerging Therapy Solutions: Membership on an entity's Board of Directors or advisory committees, Other: Chief Scientific Chair; Beam Therapeutics: Membership on an entity's Board of Directors or advisory committees, Other: Scientific Advisory Board; Alerion Biosciences: Other: Co-founder (now licensed to Avro Bio, potential for future milestones/royalties); Novartis: Membership on an entity's Board of Directors or advisory committees, Other: Steering Committee, Novartis ETB115E2201 (eltrombopag in aplastic anemia). Advisory fees donated to NAPAAC.; Orchard Therapeutics: Membership on an entity's Board of Directors or advisory committees, Other: Membership on a safety advisory board (SAB): SAB position ended 05/20/2021. Co-founder , Patents & Royalties: Potential for future royalty/milestone income, X-SCID. Provided GMP vector for clinical trial, Research Funding; bluebird bio: Membership on an entity's Board of Directors or advisory committees, Other: Insertion Site Analysis Advisory Board, Patents & Royalties: BCH licensed certain IP relevant to hemoglobinopathies to bluebird bio. The current license includes the potential for future royalty/milestone income. Bluebird has indicated they will not pursue this as a clinical program and BCH is negotiating return of, Research Funding. Bartolucci: AGIOS: Consultancy; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Other: Lecture fees, Steering committee, Research Funding; Jazz Pharma: Other: Lecture fees; Emmaus: Consultancy; Addmedica: Consultancy, Other: Lecture fees, Research Funding; INNOVHEM: Other: Co-founder; Hemanext: Consultancy; GBT: Consultancy; Bluebird: Consultancy, Research Funding; F. Hoffmann-La Roche Ltd: Consultancy; Fabre Foundation: Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 354-354
Author(s):  
Erica B. Esrick ◽  
Jian Xu ◽  
Katherine Lin ◽  
Marie Ellen McConkey ◽  
Alyse Frisbee ◽  
...  

Abstract Abstract 354 Histone deacetylase (HDAC) inhibitors are effective inducers of fetal hemoglobin, and prior studies have shown that selective inactivation of HDAC1 or HDAC2 is sufficient to induce fetal hemoglobin in vitro. In our current work, we demonstrate that HDAC1 and HDAC2 are attractive targets for clinical translation for two reasons: 1) Selective inhibition will decrease off-target effects that currently limit the use of hydroxyurea and pan-HDAC inhibitors, and 2) HDAC inhibitors induce fetal hemoglobin in various preclinical models, and they can be combined with hydroxyurea to achieve further fetal hemoglobin induction. To investigate off-target effects, we selectively inactivated HDAC1, HDAC2 or HDAC3 in human erythroid progenitor cells, and examined the effect of each knockdown on cellular cytotoxicity and cell cycle progression. Although knockdown of HDAC3 negatively influenced growth, selective knockdown of HDAC1 or HDAC2 had no effect on expansion of erythroid progenitors. In addition, knockdown of HDAC2 does not block cell cycle progression. These data support the possibility that an HDAC1- or HDAC2-specific inhibitor may offer a therapeutic advantage by reducing side effects, while maintaining robust HbF induction. Armed with this knockdown data, we are now investigating HDAC inhibitor compounds of various selectivity in in vitro and in vivo models. To perform optimal clinical trials, and ultimately to benefit the most sickle cell disease patients, it would be ideal to combine HDAC inhibitor treatment with hydroxyurea. A combination treatment approach may ameliorate some of the limitations of hydroxyurea use, such as the unpredictable effect on fetal hemoglobin levels, and the lack of benefit in beta thalassemia patients. First, we combined HDAC2 inactivation with hydroxyurea treatment in vitro. Human bone marrow-derived CD34+ cells were infected with lentiviruses containing an shRNA targeting either HDAC2 or a luciferase control gene. The cells were then treated on day 4 of erythroid differentiation with hydroxyurea (10–20 uM dose). Compared to the untreated luciferase control samples, we observed a 7–9-fold increase in gamma-globin expression in the untreated HDAC2-knockdown samples, a 2.5-fold increase in the hydroxyurea-treated luciferase control samples, and a trend toward an additive effect on gamma-globin induction in the cells where HDAC2 knockdown was combined with hydroxyurea treatment. To investigate the effects of HDAC inhibitors in vivo, we administered compounds to BCL11A conditional knockout transgenic mice (by erythroid-selective EpoR-GFP Cre) containing the human beta-globin locus. As reported previously, BCL11A inactivation powerfully de-repressed gamma-globin expression, and administration of an HDAC inhibitor, SAHA, led to a further elevation of gamma-globin mRNA. We now demonstrate that administration of another pan-HDAC inhibitor, panobinostat (LBH589), results in an additional 1.5- to 2.5-fold increase in gamma-globin mRNA relative to pre-treatment baseline. We are currently evaluating the combination of panobinostat and hydroxyurea in these mice to confirm that the compounds have an additive effect in vivo as well as in vitro. Taken together, these experiments indicate that inhibiting HDAC1 or HDAC2 is a promising therapeutic approach to increasing fetal hemoglobin levels in patients with beta-hemoglobinopathies, both alone and in combination with hydroxyurea. Disclosures: Bradner: Acetylon: .


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 640-640 ◽  
Author(s):  
Elizabeth Traxler ◽  
Yu Yao ◽  
Chunliang Li ◽  
Jeremy Grevet ◽  
Peng Huang ◽  
...  

Abstract Manipulating the developmental switch from γ- to β-globin expression that occurs after birth has been intensively investigated as therapeutic strategy for sickle cell anemia and β-thalassemia. Rare individuals with a benign condition termed hereditary persistence of fetal hemoglobin (HPFH) exhibit an attenuated or absent γ-to-β switch, resulting in high levels of fetal hemoglobin (α2γ2) in all red blood cells (RBCs) throughout life. Moreover, individuals with HPFH and homozygosity for sickle cell disease (SCD) mutations exhibit few or no clinical manifestations of the latter. We used genome editing to induce a naturally occurring 13-nucleotide (-102 to -114) deletional HPFH mutation in the γ-globin (HBG1) gene promoter. Heterozygosity for this mutation is associated with HbF levels > 30% in adults. We used the clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) system to create small deletions around -102 to -114 in the γ-globin genes in peripheral blood CD34+ cells from healthy donors. We delivered guide RNA (gRNA) and Cas9 using lentiviruses, sorted transduced hematopoietic progenitors by FACS, and cultured them using a 3-phase erythroid differentiation protocol. Real time PCR showed that γ-globin mRNA increased more than 10-fold in Cas9/gRNA transduced cells compared to controls. HbF flow cytometry and high-performance liquid chromatography (HPLC) demonstrated that induced γ-globin chains were effectively incorporated into hemoglobin tetramers. HPLC revealed 1-3% HbF in negative controls and an increase to 15% in cells transduced with gRNA and Cas9. Expression of erythroid differentiation markers CD235 and CD71 were unaffected, suggesting that the γ-globin increase is not due to impaired erythroid maturation. Next generation sequencing demonstrated that a single gRNA created one predominant mutation that co-segregated with high HbF expression and represented over 50% of the sequencing coverage. Interestingly, this mutation is identical to the 13-nucleotide HPFH deletion. We also tested the gRNA mutation efficiency after transient expression of gRNA and Cas9 in human CD34+ cells by electroporation followed by analysis of single burst-forming unit-erythroid (BFU-E) colonies formed in methylcellulose. Genomic DNA analysis revealed that one gRNA targeted 50% of HBG1 alleles, and cells that received two overlapping gRNAs demonstrated 80% mutation frequency. Real-time PCR of mRNA from edited BFU-Es showed that mutations stimulated γ-globin mRNA expression to 19-55% total globin synthesis, whereas control colonies contained 1-5% γ-globin. Together, our data demonstrate that the CRISPR-Cas9 system can generate precisely the -102 to -114 HPFH mutation at high efficiency in primary human progenitor cells and thereby induce the expression of HbF to potentially therapeutic levels. This work provides proof of concept for targeted genome editing for γ-globin activation as a therapy for patients with β hemoglobinopathies. Disclosures Weiss: Biogen: Research Funding; GlaxoSmithKline: Consultancy; Rubius: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document