In Vitro Characterization of a Homogeneous Low-Molecular Weight Heparin with Reversible Anticoagulant Activity

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4263-4263
Author(s):  
Matthew F Whelihan ◽  
Yongmei Xu ◽  
Jian Liu ◽  
Nigel S. Key

Abstract Introduction. Due to their increased half-life over unfractionated heparin (UFH) and marked decrease in the incidence of heparin induced thrombocytopenia (HIT), low molecular weight heparins (LMWH) are the most widely prescribed heparin in the US. However owing to their incomplete reversibility with protamine, LMWHs (such as Enoxaparin) carry the risk of bleeding. The synthetic pentasaccharide, Fondaparinux, also lacks a specific antidote. We recently published (Xu et al. Nat. Chem. Biol. 2014) on a new class of synthetic LMWH that is not renal-excreted and offers the benefit of reversal by protamine. The new compound, dubbed “Super 12-mer”, is a 3,483 Da dodecasaccharide consisting of an antithrombin (AT) binding moiety with repeating units of IdoA2S-GlcNS6S (S is sulfate) and two 3-O-sulfate groups which afford the ability to bind protamine. We sought to characterize this new compound in a series of biochemical and global coagulation assays to better characterize its efficacy as a new reversible anticoagulant. Methods. Factor (F) Xa-AT inhibition assays were performed in both purified and plasma-based systems. The Super 12-mer was further tested in a purified prothrombinase system, as well as by tissue factor-initiated thrombin generation assays in contact pathway inhibited citrated plasma. Results. In vitro FXa inhibition studies indicated the IC50 to be 2-fold higher (49 ng/mL, 24 nM) than was previously reported. Nevertheless, the Super 12-mer anti FXa activity was approximately 2-fold greater than Enoxaparin at identical concentrations. However, the anti FXa activities of the Super 12-mer and Enoxaparin in plasma-based systems were roughly equivalent. Prothrombinase experiments indicated that both the Super 12-mer and Enoxaparin were equivalent in their ability to inhibit FXa in complex with FVa. When the two heparinoids were compared in a plasma-based thrombin generation assay (TGA), their effects on thrombin generation were nearly identical with a 50% reduction in peak thrombin generation occurring at approximately 325 nM heparinoid. When protamine is titrated against a fixed concentration of Super 12-mer (625 nM), the Super 12-mer displays a complete reconstitution of thrombin generation. Conclusions. In plasma and purified systems, the Super 12-mer displayed virtually identical efficacy in FXa inhibition compared to Enoxaparin. In buffered systems, the Super 12-mer was approximately 2-fold more active than Enoxaparin against FXa suggesting the Super 12-mer may have other binding partners in plasma. Interestingly, FXa inhibition in prothrombinase was essentially identical between the two heparinoids. Unlike Enoxaparin however, the Super 12-mer displayed near complete reversibility with protamine in TGAs. A significant lag in thrombin generation was observed when protamine was added, consistent with a previous report (Ni Ainle et al. Blood 2009) that protamine itself can act as an anticoagulant by interfering with FV activation. These data show that the Super 12-mer has almost identical efficacy to Enoxaparin in terms of FXa inhibition, while displaying significant reversibility with protamine. Taken together with the fact that this compound can be safely used in renal-impaired patients, the Super 12-mer is a promising new heparanoid anticoagulant with a potentially enhanced safety profile. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1099-1099
Author(s):  
Alexander Gatt ◽  
Anne Riddell ◽  
Lesley Lanning ◽  
Saman Aghighi ◽  
Pamala Kanagasapathy ◽  
...  

Abstract Abstract 1099 Current guidelines recommend monitoring of low molecular weight heparins (LMWHs) using the anti-Xa assay in high risk patients like those with renal impairment, pregnancy or overweight and in children. However, it is well accepted that this test does not accurately predict the anticoagulant effect of these drugs1. This is understandable since the various LMWHs available affect the coagulation cascade in different ways relative to their different molecular structure. Notoriously, the larger LMWHs like Tinzaparin have a higher anti-IIa to anti-Xa ratio that is not detected by the anti-Xa assay. We hypothesized that thrombin generation (TG) is a better, more sensitive way how to monitor LMWH anticoagulant activity since it is a measure of the interplay of all coagulation proteins. Blood samples from patients with acute thrombosis, pregnancy and other conditions and having LMWH monitoring were analysed using a chromogenic anti-Xa assay and a TG assay as per Hemker et al2 together with a chromogenic anti-IIa and FVIII clotting assay (FVIII:C). A tissue factor trigger of 10pM Innovin was used for the TG experiments. Patient samples were divided into 2 groups: those on Tinzaparin (n=45) or Enoxaparin (n=39). There was no difference between the FVIII:C levels of the Tinzaparin and Enoxaparin groups (mean 250 vs 327IU/ml P>0.05). A higher lower mean anti-Xa and a higher mean anti-IIa level was achieved with Tinzaparin (0.48 vs 0.63 U/ml P= >0.05 for anti-Xa and 0.3 vs 0.15U/ml P=0.005 for anti-IIa respectively). The endogenous thrombin potential (ETP) was significantly lower with Tinzaparin than Enoxaparin despite a higher anti-Xa (705 vs 1216nM.min P=0.006). Linear regression analysing TG with anti-Xa of the two LMWHs shows that 1.0U/ml antiXa activity for Enoxaparin is as potent as 0.7U/ml Tinzaparin in suppressing TG to similar levels. Significant inter-individual variation in TG suppression was noted with both LMWHs. This study demonstrates that anti-Xa results achieved for different LMWHs do not have the same anticoagulant significance. Using TG, we achieved similar therapeutic anti-Xa levels as achieved from the individual LMWH clinical trials3. It is clear that TG is a better test to predict LMWH anticoagulant activity. This needs to be proven in clinical studies. 1. Baglin T et al British Journal of Haematol. 2006; 133(1): 19–34. 2. Hemker HC et al Pathophysiol Haemost Thromb, 33, 4-15. Boneu B and de Moorloose P. Semin Thromb Hemost 2001; 27(5): 519–522. Disclosures: No relevant conflicts of interest to declare.


Marine Drugs ◽  
2018 ◽  
Vol 16 (11) ◽  
pp. 445 ◽  
Author(s):  
Xue Liu ◽  
Peng Du ◽  
Xiao Liu ◽  
Sujian Cao ◽  
Ling Qin ◽  
...  

The active sulfated polysaccharide from seaweed possesses important pharmaceutical and biomedical potential. In the study, Monostroma sulfated polysaccharide (MSP) was obtained from Monostroma angicava, and the low-molecular-weight fragments of MSP (MSP-Fs: MSP-F1–MSP-F6) were prepared by controlled acid degradation. The molecular weights of MSP and MSP-F1–MSP-F6 were 335 kDa, 240 kDa, 90 kDa, 40 kDa, 24 kDa, 12 kDa, and 6.8 kDa, respectively. The polysaccharides were sulfated rhamnans that consisted of →3)-α-l-Rhap-(1→ and →2)-α-l-Rhap-(1→ units with partial sulfation at C-2 of →3)-α-l-Rhap-(1→ and C-3 of →2)-α-l-Rhap-(1→. Anticoagulant properties in vitro of MSP and MSP-F1–MSP-F6 were evaluated by studying the activated partial thromboplastin time, thrombin time, and prothrombin time. Anticoagulant activities in vivo of MSP and MSP-F4 were further evaluated; their fibrin(ogen)olytic activities in vivo and thrombolytic properties in vitro were also assessed by D-dimer, fibrin degradation products, plasminogen activator inhibitior-1, and clot lytic rate assays. The results showed that MSP and MSP-F1–MSP-F4 with molecular weights of 24–240 kDa had strong anticoagulant activities. A decrease in the molecular weight of MSP-Fs was accompanied by a decrease in the anticoagulant activity, and higher anticoagulant activity requires a molecular weight of over 12 kDa. MSP and MSP-F4 possessed strong anticoagulant activities in vivo, as well as high fibrin(ogen)olytic and thrombolytic activities. MSP and MSP-F4 have potential as drug or helpful food supplements for human health.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4217-4217
Author(s):  
Gabriela Chang ◽  
Helen M. Atkinson ◽  
Leslie R. Berry ◽  
Anthony K.C. Chan

Abstract Introduction: Unfractionated heparin (UFH) and low molecular weight heparin (LMWH) are widely used anticoagulants for thrombosis treatment. However, these anticoagulants have limitations such as increased bleeding, variable dose response, required frequent monitoring, and, in the case of LMWH, inability to inhibit thrombin. This has led to the development of a covalent complex of antithrombin and heparin (ATH), which has been shown to overcome many of these shortcomings. ATH has faster rates of inhibition of many coagulation factors, is able to inhibit clot-bound thrombin, and is a more effective inhibitor of both venous and arterial thrombosis in animal models. Moreover, in a rabbit thrombosis model, ATH has been shown to decrease clot mass and fibrin accretion, while the contrary was observed for UFH. From these observations, it was suggested that ATH may enhance fibrin breakdown and thus led to investigations into the effects of UFH and ATH on fibrinolysis. In vitro studies have shown that UFH enhances antithrombin inhibition of plasmin. In addition, ATH displays a slightly greater inhibition of plasmin generation and activity. Such studies were conducted in purified systems, in the absence of other plasmin inhibitors naturally present in plasma. Therefore, the aim of the present study was to compare the effects of UFH, LMWH, and ATH on plasmin generation in plasma. Methods: At 37°C tissue plasminogen activator (tPA) and soluble fibrin fragments (fib) were added to normal adult pooled platelet poor plasma supplemented with 0.35, 0.7, 1.4, or 2.1 U anti-Xa/ml UFH, LMWH, or ATH, to initiate plasmin generation (8.93nM tPA and 300µg/ml fib). At various time points, subsamples were mixed with excess plasminogen activator inhibitor 1 (PAI-1) (55.12nM) to stop further plasmin generation. The plasmin concentration at each time point was determined using a plasmin-specific chromogenic substrate and a standard curve produced from purified plasmin. Results: Comparisons of mean area under the curve (AUC) for plasmin generation displayed a significant decrease in plasmin generation in the presence of all three anticoagulants at all doses tested (p<0.05). Comparing the anticoagulants at similar doses, plasmin generation was significantly decreased in the presence of ATH (15384.66±1930.23nM/min) compared to LMWH (23892.28±3090.54nM/min) at 0.7 U/ml (p<0.05). At a dose of 1.4 U/ml, there was significantly less plasmin generated, over time, in the presence of UFH (20089.49±3022.1623nM/min) and ATH (19273.86±1805.7323nM/min) when compared to LMWH (24743.18±1265.1023nM/min) (p<0.05). There was no significant difference in plasmin inhibition between UFH and ATH at any of the doses tested. Conclusion: The present study supports previous findings that UFH and ATH can facilitate antithrombin inhibition of plasmin. It is also observed that LMWH catalyzes the inhibition of plasmin by antithrombin but possibly to a lesser extent. These findings suggest that ATH has a similar inhibitory effect on plasmin generation and activity in plasma compared to UFH, despite its overall superior anticoagulant properties. Therefore, previous in vivo observations displaying decrease in clot mass with administration of ATH was due to its enhanced anticoagulant abilities and not fibrinolysis enhancement. These findings add to our understanding of ATH mechanisms of action and aid in its development for clinical use. Disclosures No relevant conflicts of interest to declare.


1987 ◽  
Author(s):  
B Casu ◽  
L Marchese ◽  
A Naggi ◽  
G Torri ◽  
J Fareed ◽  
...  

In order to investigate the influence of charge distribution and chain length on the biological properties of sulfated polysaccharides, additional sulfate groups were introduced into the galactosaminoglycans, chondriotin sulfate and dermatan sulfate. Using a flexible method (with sulfuric acid and chlorosulfonic acid) for concurrent sulfation and controlled depolymerization, numerous products were obtained and characterized by chemical, enzymatic and nuclear magnetic resonance spectroscopic methods. The biologic actions of these products were profiled in both in vitro and in vivo assays for antithrombotic activity. Despite a weaker in vitro anticoagulant activity, low molecular weight over sulfated galactosaminoglycans produced significant dose-dependent antithrombotic actions in animal models which were similar to the actions observed with oversulfated low molecular weight heparins. These results suggest that a significant antithrombotic activity can be elicited through non-specific interactions of polysulfates with cellular and plasma components, and that clusters of sulfate groups such as the 4-6 disulfate group on D-galactosaminoglycan residues may be important for these interactions. Furthermore, these results, also suggest that supersulfation of glycosaminogly-cans results in products with biologic activity distinct from the native material.


2020 ◽  
Vol 18 (12) ◽  
pp. 3267-3279
Author(s):  
Minna Voigtlaender ◽  
Lennart Beckmann ◽  
Anita Schulenkorf ◽  
Bianca Sievers ◽  
Christina Rolling ◽  
...  

2009 ◽  
Vol 102 (07) ◽  
pp. 42-48 ◽  
Author(s):  
Grigoris T. Gerotziafas ◽  
Charlotte Dupont ◽  
Alex C. Spyropoulos ◽  
Mohamed Hatmi ◽  
Meyer M. Samama ◽  
...  

SummaryVitamin K antagonists (VKA) treatment starts with co-administration of low-molecular-weight heparin (LMWH). The anticoagulation induced by the two drugs is still not well determined. In the present study we used thrombin generation assay to evaluate the hypo-coagulation induced by treatment with VKA and by the combination of VKA with LMWH. Tissue factor triggered thrombin generation in platelet-poor plasma was assessed in samples from 15 healthy volunteers, 97 samples from patients treated with VKA and 41 samples from patients receiving enoxaparin and VKA. Patients were classified according to international normalised ratio (INR) level (<2, 2–3 and >3).In plasma samples from patients treated with VKA having INR 2–3 the inhibition of thrombin generation reached 50% compared to controls. In samples with INR>3 this inhibition was 80%. In samples from patients receiving both LMWH and VKA, thrombin generation was significantly decreased compared to the controls and VKA group. In samples with an INR 2–3 obtained from patients treated with LMWH and VKA, the inhibition of thrombin generation was similar to that observed in samples with an INR>3 obtained from VKA treated patients. Thrombin generation assay is sensitive to detect the global the anticoagulant effect produced by the association of LMWH and VKA. For equal INR dual anticoagulant treatment induces significantly more profound inhibition of thrombin generation compared to treatment with VKA alone. The clinical relevance of this observation merits to be studied in prospective studies in patients with defined indications of anticoagulant therapy.


1987 ◽  
Author(s):  
T G van Dinther ◽  
F Hol ◽  
D G Meuleman

The effects of various heparin(oid)s, standard heparin VII (SH), dermatan sulphate (DS), a low molecular weight fraction of heparin (UMW-H), FragminR (FRA), Org 10172 = low molecular weight heparinoid, the fraction of Org 10172 with high affinity for AT-III (HA-10172) and the low affinity fraction (LA-10172) respectively were examined on in vitro thrombin generation and inactivation.Thrombin inactivation in the presence of either heparin cofactor II (HC-II) or anti-thrombin III (AT-III) was assessed with two newly developed assays using the purified cofactors, thrombin and chromogenic substrate S2238 on microtiterplates. Thrombin generation in the presence of HC-II and AT-III was studied using purified factor Xa, prothrombin and blood platelet lysate and the residual thrombin activity was assessed amidolytically.The inhibition of the compounds on thrombin activity are summarized in the tableThe following conclusions can be drawn:- SH, LMW-H, HA-10172 and FRA potentiate the AT-III mediated inactivation of Ha more strongly than the HC-II mediated inactivation.- DS and LA-10172 show the reverse pattern of inactivation, while Org 10172 potentiates both inactivaton pathways to a similar extent.Thrombin generation in the presence of HC-II is inhibited by mw-heparin(oid)s at approx. 2-5 times lower concentrations than the HC-II mediated thrombin inactivation, while the inhibiting effect of SH in both assays is comparable.AT-III mediated thrombin generation inhibition and AT-III mediated thrombin inactivation is comparable as well for SH, LMW-H and FRA. In contrast, Org 10172 and its subfractions are approx. 10 times more potent on AT-III mediated thrombin generation inhibition than on AT-III mediated thrombin inactivation.Org 10172 shows low anti-thrombin activity and this activity is mainly mediated via FC-II.


Sign in / Sign up

Export Citation Format

Share Document