INFLUENCE OF THE SULFATION PATTERN ON CERTAIN BIOLOGICAL PROPERTIES OF GALACTOSAMINOGLYCANS

1987 ◽  
Author(s):  
B Casu ◽  
L Marchese ◽  
A Naggi ◽  
G Torri ◽  
J Fareed ◽  
...  

In order to investigate the influence of charge distribution and chain length on the biological properties of sulfated polysaccharides, additional sulfate groups were introduced into the galactosaminoglycans, chondriotin sulfate and dermatan sulfate. Using a flexible method (with sulfuric acid and chlorosulfonic acid) for concurrent sulfation and controlled depolymerization, numerous products were obtained and characterized by chemical, enzymatic and nuclear magnetic resonance spectroscopic methods. The biologic actions of these products were profiled in both in vitro and in vivo assays for antithrombotic activity. Despite a weaker in vitro anticoagulant activity, low molecular weight over sulfated galactosaminoglycans produced significant dose-dependent antithrombotic actions in animal models which were similar to the actions observed with oversulfated low molecular weight heparins. These results suggest that a significant antithrombotic activity can be elicited through non-specific interactions of polysulfates with cellular and plasma components, and that clusters of sulfate groups such as the 4-6 disulfate group on D-galactosaminoglycan residues may be important for these interactions. Furthermore, these results, also suggest that supersulfation of glycosaminogly-cans results in products with biologic activity distinct from the native material.

Marine Drugs ◽  
2018 ◽  
Vol 16 (11) ◽  
pp. 445 ◽  
Author(s):  
Xue Liu ◽  
Peng Du ◽  
Xiao Liu ◽  
Sujian Cao ◽  
Ling Qin ◽  
...  

The active sulfated polysaccharide from seaweed possesses important pharmaceutical and biomedical potential. In the study, Monostroma sulfated polysaccharide (MSP) was obtained from Monostroma angicava, and the low-molecular-weight fragments of MSP (MSP-Fs: MSP-F1–MSP-F6) were prepared by controlled acid degradation. The molecular weights of MSP and MSP-F1–MSP-F6 were 335 kDa, 240 kDa, 90 kDa, 40 kDa, 24 kDa, 12 kDa, and 6.8 kDa, respectively. The polysaccharides were sulfated rhamnans that consisted of →3)-α-l-Rhap-(1→ and →2)-α-l-Rhap-(1→ units with partial sulfation at C-2 of →3)-α-l-Rhap-(1→ and C-3 of →2)-α-l-Rhap-(1→. Anticoagulant properties in vitro of MSP and MSP-F1–MSP-F6 were evaluated by studying the activated partial thromboplastin time, thrombin time, and prothrombin time. Anticoagulant activities in vivo of MSP and MSP-F4 were further evaluated; their fibrin(ogen)olytic activities in vivo and thrombolytic properties in vitro were also assessed by D-dimer, fibrin degradation products, plasminogen activator inhibitior-1, and clot lytic rate assays. The results showed that MSP and MSP-F1–MSP-F4 with molecular weights of 24–240 kDa had strong anticoagulant activities. A decrease in the molecular weight of MSP-Fs was accompanied by a decrease in the anticoagulant activity, and higher anticoagulant activity requires a molecular weight of over 12 kDa. MSP and MSP-F4 possessed strong anticoagulant activities in vivo, as well as high fibrin(ogen)olytic and thrombolytic activities. MSP and MSP-F4 have potential as drug or helpful food supplements for human health.


2009 ◽  
Vol 101 (05) ◽  
pp. 860-866 ◽  
Author(s):  
Thales Cipriani ◽  
Ana Helena Gracher ◽  
Lauro de Souza ◽  
Roberto Fonseca ◽  
Celso Belmiro ◽  
...  

SummaryEvaluated were the anticoagulant and antithrombotic activities, and bleeding effect of two chemically sulfated polysaccharides, obtained from citric pectin, with different average molar masses. Both low-molecular-weight (Pec-LWS, 3,600 g/mol) and high-molecular-weight sulfated pectins (Pec-HWS, 12,000 g/mol) had essentially the same structure, consisting of a (1→4)-linked α-D-GalpA chain with almost all its HO-2 and HO-3 groups substituted by sulfate. Both polysaccharides had anticoagulant activity in vitro, although Pec-HWS was a more potent anti-thrombotic agent in vivo, giving rise to total inhibition of venous thrombosis at a dose of 3.5 mg/kg body weight. Surprisingly, in contrast with heparin, Pec-HWS and Pec-LWS are able to directly inhibit α-thrombin and factor Xa by a mechanism independent of antithrombin (AT) and/or heparin co-factor II (HCII). Moreover, Pec-HWS provided a lower risk of bleeding than heparin at a dose of 100% effectiveness against venous thrombosis, indicating it to be a promising antithrombotic agent.


2001 ◽  
Vol 86 (11) ◽  
pp. 1215-1220 ◽  
Author(s):  
C. P. Vicente ◽  
P. Zancan ◽  
L. L. Peixoto ◽  
R. Alves-Sá ◽  
F. S. Araújo ◽  
...  

SummaryWe compared the anticoagulant, antithrombotic and bleeding effects of highly sulfated dermatan sulfates from invertebrates and their mammalian counterpart. An invertebrate dermatan sulfate containing 2-O-sulfated α-L-iduronic acid and 4-O-sulfated N-acetyl-β-D-galactosamine residues is a potent anticoagulant due to a high heparin cofactor II activity. It inhibits thrombin due to the formation of a covalent complex with heparin cofactor II, as in the case of mammalian dermatan sulfate, but the effect occurs at lower concentrations for the invertebrate polysaccharide. Surprisingly, the invertebrate dermatan sulfate has a lower potency to prevent thrombus formation on an experimental model and a lower bleeding effect in rats than the mammalian dermatan sulfate. In contrast, another invertebrate dermatan sulfate, also enriched in 2-O-sulfated α-L-iduronic acid, but in this case sulfated at O-6 position of the N-acetyl-β-D-galactosamine units, has no in vitro or in vivo anticoagulant activity, does not prevent thrombus formation but shows a bleeding effect similar to the mammalian glycosaminoglycan. Overall, these results demonstrate unbalanced effects of dermatan sulfates with different sulfation patterns on coagulation, thrombosis and bleeding, and raise interesting questions concerning the relationship among these three biological actions of sulfated polysaccharides.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1868-1868 ◽  
Author(s):  
Walter P. Jeske ◽  
Brian Neville ◽  
Qing Ma ◽  
Debra A. Hoppensteadt ◽  
Jawed Fareed

Abstract Introduction: Heparin cleavage under alkaline conditions results in low molecular weight heparin (LMWH) chains, a significant proportion of which contain 1,6-anhydromannosamine and/or 1,6-anhydroglucosamine at the reducing end. Despite the widespread use of the LMWHs for the prophylaxis and treatment of thrombosis, it remains unclear whether such structural modifications impact the pharmacologic activity of the drug. This study examined the in vitro anticoagulant and in vivo pharmacokinetic/pharmacodynamic (PK/PD) behavior of LMWHs containing varying levels of 1,6-anhydrosugar content. Materials and Methods: By altering the temperature and pH of the depolymerization reaction, LMWHs containing 0, 5, 10, 20 and 40% 1,6-anhydrosugar were produced. These compounds were supplemented to normal human plasma and normal primate plasma and assayed for anticoagulant (APTT and Heptest) and antiprotease (anti-IIa and anti-Xa) activity. The effect of 1,6-anhydrosugar on the PK/PD profile of LMWHs was assessed by administering the 40% 1,6-anhydro LMWH or enoxaparin (~20% 1,6-anhydrosugar) intravenously to groups of non-human primates (n=4–6) at a dose of 1 mg/kg. Blood samples were collected at baseline and at various time points up to 24 hours post-administration for determination of Heptest clotting times, anti-IIa and anti-Xa activity. The biologic activities were converted to equivalent LMWH concentrations using calibration curves prepared in normal primate plasma. Results: The molecular weight profiles of these LMWHs were comparable. No effect on anticoagulant or antiprotease activity was observed when the 1,6-anhydro content varied between 0 and 10%. When the 1,6-anhydro content was increased to 20 and 40%, a content-dependent reduction in anticoagulant activity was observed such that the prolongation of the APTT and Heptest by the 40% 1,6-anhydro LMWH was 58 and 23% less, respectively, than that produced by the LMWH lacking the 1,6-anhydro group when tested in the linear range of the concentration-response curve. This effect appears to be related primarily to an interference with antithrombin activity. Inhibition of thrombin activity in an amidolytic assay was 35% lower with the 40%-anhydro LMWH compared to the 0% anhydro compound (10 mg/ml), whereas anti-Xa activity was only 7% lower. Assay dependent variations were observed in the PK/PD profiles of the 40% anhydro LMWH and enoxaparin. As expected, the half-life of antithrombin activity was considerably shorter than that of the anti-Xa activity. The pharmacokinetic behavior of the 40% 1,6-anhydro LMWH and enoxaparin in terms of half-life, area under the curve, systemic clearance and volume of distribution was not significantly different when calculated using plasma concentrations determined by anti-IIa or anti-Xa assay. When concentrations determined by Heptest were used, the AUC determined for enoxaparin was approximately 2-fold higher than that determined with the 40% anhydro LMWH. Conclusions: Microchemical changes in the structure of low molecular weight heparin oligosaccharides can induce measurable changes in the biologic activity of LMWHs. While the pharmacokinetic profile does not appear to be altered by an enhanced 1,6-anhydro content, the effect of 1,6-anhydro content on the clinical efficacy and safety of LMWHs is unknown. Such findings may have particular impact on the development of generic LMWHs.


1997 ◽  
Vol 77 (02) ◽  
pp. 399-402 ◽  
Author(s):  
Hideki Nagase ◽  
Keiko T Kitazato ◽  
Eiji Sasaki ◽  
Masahiko Hattori ◽  
Kenji Kitazato ◽  
...  

SummaryA previous study in this laboratory showed that depolymerized holothurian glycosaminoglycan (DHG) has two different antithrombin III (ATIII)-independent inhibitory effects on the in vitro blood coagulation system: heparin cofactor II (HCII)-dependent inhibition of thrombin, and ATIII- and HCII-independent inhibition of factor X activation by factor IXa-factor Villa complex (Nagase et al. Blood 85, 1527-1534, 1995). In the present study, we compared the antithrombotic effects of DHG in normal and in ATIII-deficient mice with those of unfractionated heparin (UFH) and low molecular weight heparin (LMWH). DHG, unlike UFH and LMWH, exerted an in vivo antithrombotic effect even in mice with decreased plasma ATIII activity (about 30% of normal). We then compared the anticoagulant and antithrombotic effects of DHG in mice with those of high molecular weight (HMW)-DHG, low molecular weight (LMW)-DHG, and dermatan sulfate (DS). In terms of in vitro anticoagulant activity assessed by use of purified human components, DHGs (DHG, HMW-DHG, and LMW-DHG) had different anti-thrombin activity in the presence of HCII and anti-factor Xase activities, which differences were dependent on the molecular weight. With respect to in vivo antithrombotic activity, DHG, HMW-DHG, and LMW-DHG showed almost the same inhibitory effect on acute thromboembolism in mice (minimum effective dose [MED]: >0.3 mg/kg). Since the antithrombotic activities of DHGs were not correlated with the anticoagulant-specific activities, the contribution of the two anticoagulant activities to the in vivo antithrombotic effect of DHGs remains unknown. However, DHG was more effective against acute thromboembolism in mice than DS (MED >1 or >3 mg/kg), which showed no inhibitory activity toward factor Xase. Therefore, it seems that factor Xase inhibition contributes greatly to the antithrombotic effect of DHG and that DHG exerts this effect in mice mainly by inhibiting factor Xase.


1977 ◽  
Author(s):  
J. N. Shanberge ◽  
S. Ambegaonkar ◽  
T. Kitani ◽  
M. Gruhl ◽  
J. Kambayashi ◽  
...  

When defibrinated platelet-poor plasma 1s chromatographed on Sephadex G-200, fractions with antithrombin-heparin cofactor activity are found 1n only one area. When platelet-poor plasma treated with a tritium-labelled heparin is chromatographed on Sephadex G-200, radioactivity, signifying the presence of heparin, is spread across all of the protein fractions, whereas immediate antithrombin activity is located in two. main areas. Tritiated heparin produced from porcine intestinal mucosa was fractionated on a Sephadex G-200 column with separation of the higher and lower molecular weight fractions. These fractions were added to platelet-poor plasma which was then rechromatographed on Sephadex G-200.With the higher molecular weight, heparin radioactivity appeared in fractions which usually have immediate antithrombin activity, whereas, with the lower molecular weight heparin, it did not. A comparison of the activities of the higher and lower molecular weight material was made after intravenous injection into rats. The higher molecular weight heparin gave higher concentrations of radioactivity in the liver and blood. In addition, the anticoagulant activity as measured by a whole blood recalcification clotting time was maintained for a much longer period. The lower molecular weight heparin was excreted more rapidly in the urine. It is concluded that only the higher molecular weight heparins have anticoagulant activity 1n combining with antithrombin whereas lower molecular weight heparins do not combine with antithrombin but are eliminated in the urine.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 600 ◽  
Author(s):  
Ewe ◽  
Noske ◽  
Karimov ◽  
Aigner

A major hurdle for exploring RNA interference (RNAi) in a therapeutic setting is still the issue of in vivo delivery of small RNA molecules (siRNAs). The chemical modification of polyethylenimines (PEIs) offers a particularly attractive avenue towards the development of more efficient non-viral delivery systems. Here, we explore tyrosine-modified polyethylenimines with low or very low molecular weight (P2Y, P5Y, P10Y) for siRNA delivery. In comparison to their respective parent PEI, they reveal considerably increased knockdown efficacies and very low cytotoxicity upon tyrosine modification, as determined in different reporter and wildtype cell lines. The delivery of siRNAs targeting the anti-apoptotic oncogene survivin or the serine/threonine-protein kinase PLK1 (polo-like kinase 1; PLK-1) oncogene reveals strong inhibitory effects in vitro. In a therapeutic in vivo setting, profound anti-tumor effects in a prostate carcinoma xenograft mouse model are observed upon systemic application of complexes for survivin or PLK1 knockdown, in the absence of in vivo toxicity. We thus demonstrate the tyrosine-modification of (very) low molecular weight PEIs for generating efficient nanocarriers for siRNA delivery in vitro and in vivo, present data on their physicochemical and biological properties, and show their efficacy as siRNA therapeutic in vivo, in the absence of adverse effects.


1999 ◽  
Vol 82 (11) ◽  
pp. 1462-1468 ◽  
Author(s):  
José Fernández ◽  
Jari Petäjä ◽  
John Griffin

SummaryUnfractionated heparin potentiates the anticoagulant action of activated protein C (APC) through several mechanisms, including the recently described enhancement of proteolytic inactivation of factor V. Possible anticoagulant synergism between APC and physiologic glycosaminoglycans, pharmacologic low molecular weight heparins (LMWHs), and other heparin derivatives was studied. Dermatan sulfate showed potent APC-enhancing effect. Commercial LMWHs showed differing abilities to promote APC activity, and the molecular weight of LMWHs correlated with enhancement of APC activity. Degree of sulfation of the glycosaminoglycans influenced APC enhancement. However, because dextran sulfates did not potentiate APC action, the presence of sulfate groups per se on a polysaccharide is not sufficient for APC enhancement. As previously for unfractionated heparin, APC anticoagulant activity was enhanced by glycosaminoglycans when factor V but not factor Va was the substrate. Thus, dermatan sulfate and LMWHs exhibit APC enhancing activity in vitro that could be of physiologic and pharmacologic significance.


1994 ◽  
Vol 72 (06) ◽  
pp. 942-946 ◽  
Author(s):  
Raffaele Landolfi ◽  
Erica De Candia ◽  
Bianca Rocca ◽  
Giovanni Ciabattoni ◽  
Armando Antinori ◽  
...  

SummarySeveral “in vitro” and “in vivo” studies indicate that heparin administration may affect platelet function. In this study we investigated the effects of prophylactic heparin on thromboxane (Tx)A2 biosynthesis “in vivo”, as assessed by the urinary excretion of major enzymatic metabolites 11-dehydro-TxB2 and 2,3-dinor-TxB2. Twenty-four patients who were candidates for cholecystectomy because of uncomplicated lithiasis were randomly assigned to receive placebo, unfractionated heparin, low molecular weight heparin or unfractionaed heparin plus 100 mg aspirin. Measurements of daily excretion of Tx metabolites were performed before and during the treatment. In the groups assigned to placebo and to low molecular weight heparin there was no statistically significant modification of Tx metabolite excretion while patients receiving unfractionated heparin had a significant increase of both metabolites (11-dehydro-TxB2: 3844 ± 1388 vs 2092 ±777, p <0.05; 2,3-dinor-TxB2: 2737 ± 808 vs 1535 ± 771 pg/mg creatinine, p <0.05). In patients randomized to receive low-dose aspirin plus unfractionated heparin the excretion of the two metabolites was largely suppressed thus suggesting that platelets are the primary source of enhanced thromboxane biosynthesis associated with heparin administration. These data indicate that unfractionated heparin causes platelet activation “in vivo” and suggest that the use of low molecular weight heparin may avoid this complication.


1964 ◽  
Vol 12 (01) ◽  
pp. 232-261 ◽  
Author(s):  
S Sasaki ◽  
T Takemoto ◽  
S Oka

SummaryTo demonstrate whether the intravascular precipitation of fibrinogen is responsible for the toxicity of heparinoid, the relation between the toxicity of heparinoid in vivo and the precipitation of fibrinogen in vitro was investigated, using dextran sulfate of various molecular weights and various heparinoids.1. There are close relationships between the molecular weight of dextran sulfate, its toxicity, and the quantity of fibrinogen precipitated.2. The close relationship between the toxicity and the precipitation of fibrinogen found for dextran sulfate holds good for other heparinoids regardless of their molecular structures.3. Histological findings suggest strongly that the pathological changes produced with dextran sulfate are caused primarily by the intravascular precipitates with occlusion of the capillaries.From these facts, it is concluded that the precipitates of fibrinogen with heparinoid may be the cause or at least the major cause of the toxicity of heparinoid.4. The most suitable molecular weight of dextran sulfate for clinical use was found to be 5,300 ~ 6,700, from the maximum value of the product (LD50 · Anticoagulant activity). This product (LD50 · Anticoagulant activity) can be employed generally to assess the comparative merits of various heparinoids.5. Clinical use of the dextran sulfate prepared on this basis gave satisfactory results. No severe reaction was observed. However, two delayed reactions, alopecia and thrombocytopenia, were observed. These two reactions seem to come from the cause other than intravascular precipitation.


Sign in / Sign up

Export Citation Format

Share Document