Circulating Memory T Cells Isolated from Hodgkin Lymphoma Patients Display Evidence of Exhaustion and Chronic Activation

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4400-4400
Author(s):  
Catherine S. Diefenbach ◽  
Bruce G. Raphael ◽  
Kenneth B. Hymes ◽  
Tibor Moskovits ◽  
David Kaminetzky ◽  
...  

Abstract Background: In Hodgkin lymphoma (HL) the malignant Hodgkin Reed-Sternberg (HRS) cells comprise only a small fraction of the total cellular tumor population. These HRS cells orchestrate an inflammatory microenvironment of reactive cells that propagate a permissive milieu for HL growth, contributing to an ineffective local anti-tumor immune response. The peritumoral CD4 and CD8 T cells in HL patients show high expression of the receptor programmed death-1 (PD-1), involved in the functional impairment and “exhaustion” of T cells. Growing data suggests that this HL-mediated immune suppression may have effects that extend beyond the tumor microenvironment. High systemic levels of inflammatory cytokines and chemokines in HL patients has been reported. We characterized the systemic immune profile of HL patients with both newly diagnosed (ND) and relapsed (R) disease. Methods: Informed consent for correlative blood testing was obtained from patients with ND (n=8) or R (n=5) HL treated at the NYU Perlmutter Cancer Center or NY Presbyterian/Weil Cornell since January of 2013. Blood samples were drawn pre-treatment, and at sequential timepoints during and after therapy. Peripheral blood mononuclear cells (PBMC) were isolated using Ficoll separation method and cells were frozen for subsequent analysis. The frozen PBMC were then stained with fluorescent-conjugated antibodies against T cell surface molecules in 10-color FACS analysis. The analyses were performed after gating live cells for CD4, CD8 and memory and effector T cell markers. Patient samples were compared to normal controls matched for age and sex (n=18). Results: The median HL patient age was 32 (22-72), and 8 subjects were male. All ND HL patients were treated with ABVD (range 4-6 cycles) +/- consolidative radiation; R patients had median of 3 prior therapies. One patient out of 5 had prior autologous stem cell transplant (SCT), and 1 had prior allogeneic SCT, but was not on immunosuppression. Eight patients (6ND, 2R) responded to therapy (8 CR); 5 patients (1ND, 4R) progressed on therapy or had stable disease. HL patients displayed a high frequency of the exhaustion marker PD-1 on CD4 central memory T cells (CD4+CD45RO+CD27+) compared to normal matched controls (NC): mean 41, standard error (SE) 4.8 for HL patients vs. mean 22.2, SE 1.3 for NC (p = 0.0002) (Figure 1A). PD-1 expression was similarly elevated on CD8 central memory T cells (CD8+CD45RO+CD27+) of HL patients: mean 55, SE 3.3 vs. NC: mean 40, SE 3.3 (p = 0.003) (Figure 1B). HL patients also displayed an increased frequency of PD-1 expression on CD27 negative CD4 effector T cells: mean 43, SE 4, vs. NC: mean 28.5, SE 2.4 (p = 0.003) (Figure 2). In 4 of the HL patients who responded to therapy, PD-1 expression on central memory CD4+ cells declined after therapy: mean 30.1 vs. mean increase of +2.67 in 3 patients who progressed on therapy (p< 0.009). A higher number of subjects in prospective analysis is underway, to confirm whether a response to therapy may be correlated with a reversal of the suppressed phenotype of T cells in these patients. Conclusion: HL patients have evidence of chronic activation/exhaustion in their central memory and effector T cells, suggesting that ineffective immune clearance of the HRS cells may be a systemic rather than local phenomenon. In patients with progressive disease for whom this phenotype persists it is worthy of investigation whether this immune dysfunction is a cause or consequence of resistance to therapy. This may be rationale for immune targeted therapy in patients with relapsed or resistant disease. Figure 1. Evidence for increased levels of T cell exhaustion in central memory T cells of HL patients. PBMC were stained with specific fluorescent conjugated antibodies against T cell markers (CD3, CD4, CD8) together with differentiation markers (CD45RO, CD27) and PD1 and analyzed using FACS (LSR-II). The proportion of PD1+ T cells were determined in: A) CD4+CD45RO+CD27+ and B) CD8+CD45RO+CD27+ T cells. Figure 1. Evidence for increased levels of T cell exhaustion in central memory T cells of HL patients. PBMC were stained with specific fluorescent conjugated antibodies against T cell markers (CD3, CD4, CD8) together with differentiation markers (CD45RO, CD27) and PD1 and analyzed using FACS (LSR-II). The proportion of PD1+ T cells were determined in: A) CD4+CD45RO+CD27+ and B) CD8+CD45RO+CD27+ T cells. Figure 2. Evidence for increased levels of T cell exhaustion in effector memory CD 4+ T cells of HL patients. PBMC were stained with specific fluorescent conjugated antibodies against T cell markers (CD3, CD4) together with differentiation markers (CD45RO, CD27) and PD1 and analyzed using FACS (LSR-II). The proportion of PD1+ T cells was determined in CD4+RO+CD27- T cells Figure 2. Evidence for increased levels of T cell exhaustion in effector memory CD 4+ T cells of HL patients. PBMC were stained with specific fluorescent conjugated antibodies against T cell markers (CD3, CD4) together with differentiation markers (CD45RO, CD27) and PD1 and analyzed using FACS (LSR-II). The proportion of PD1+ T cells was determined in CD4+RO+CD27- T cells Figure 3 Figure 3. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3243-3243
Author(s):  
Kazuaki Yokoyama ◽  
Tokiko Nagamura-Inoue ◽  
Shin Nakayama ◽  
Ikuo Ishige ◽  
Kazuo Ogami ◽  
...  

Abstract CD26 is a transmembrane glycoprotein with intrinsic dipeptidyl peptidase IV (DPPIV) activity as well as costimulatory activity of mitotic signals triggered by the CD3/TCR complex. Based on the expression level of CD26, CD4+ and CD8+ T cells can be divided into 3 (high/intermediate/low or negative) subsets. The significance of CD26 has been studied mainly on CD4+ T cells, and CD26highCD4+ T cells are considered to represent effector memory T cells of a typical Th1 phenotype producing IL2 and IFNg. Furthermore, we reported a significant decrease of this subset in CML patients under imatinib therapy in comparison to those under IFNa therapy and normal volunteers. In contrast, the role of each subset of CD8+ T cells has not yet been clarified. Multi-parameter flow cytometry analysis was performed to characterize CD8+ T cells differentially expressing CD26 in combination with intracellular detection of effector molecules such as perforin (P) and granzyme B (Gr). The capacity to secrete effector cytokines such as IFNg following short-term stimulation was also assessed. As a result, according to the expression level of CD26, we could clearly categorize CD8+ T cells as follows: CD26highCD8+ T cells are defined as central memory T cells which has a phenotype of CD45RO+CD28+CD27+ IFNg+Gr−P+/−, CD26intCD8+ T cells as naïve T cells of CD45ROCD28+ CD27+ IFNg−Gr−P−, and CD26lowCD8+ T cells as effector memory/effector T cells of CD45RO−/+ CD28−CD27−IFNg++Gr++P++, respectively. We next investigated the effects of imatinib on 3 distinct subsets during CD8+ T cell differentiation program. Peripheral blood mononuclear cells were primed with anti-CD3/CD28 MAb and subjected to the grading doses of imatinib for short term culture, followed by flow cytometory. CFSE labeling was used for monitoring cell proliferation. Intriguingly, we found that imatinib dose-dependently inhibits activation, cytokine production and proliferation of CD26highCD8+ central memory T cell subsets in a differentiation stage-specific manner. Finally, we compared the absolute number of peripheral blood CD26highCD8+ T cell subsets between 20 patients with CML in imatinib-induced CCR and 20 normal volunteers, clearly indicating a significant decrease of this subset in CML patients (22.30/ml vs 45.60/ml, p<0.01). The present study offers another evidence for immunomodulatory effects of imatinib or the critical role of Abl (-related) kinase in T cell development, and draws special attention to susceptibility to viral infection of CML patients under long-term imatinib therapy. Figure Figure


Blood ◽  
2010 ◽  
Vol 116 (5) ◽  
pp. 767-771 ◽  
Author(s):  
James J. Campbell ◽  
Rachael A. Clark ◽  
Rei Watanabe ◽  
Thomas S. Kupper

Abstract Cutaneous T-cell lymphoma (CTCL) encompasses leukemic variants (L-CTCL) such as Sézary syndrome (SS) and primarily cutaneous variants such as mycosis fungoides (MF). To clarify the relationship between these clinically disparate presentations, we studied the phenotype of T cells from L-CTCL and MF. Clonal malignant T cells from the blood of L-CTCL patients universally coexpressed the lymph node homing molecules CCR7 and L-selectin as well as the differentiation marker CD27, a phenotype consistent with central memory T cells. CCR4 was also universally expressed at high levels, and there was variable expression of other skin addressins (CCR6, CCR10, and CLA). In contrast, T cells isolated from MF skin lesions lacked CCR7/L-selectin and CD27 but strongly expressed CCR4 and CLA, a phenotype suggestive of skin resident effector memory T cells. Our results suggest that SS is a malignancy of central memory T cells and MF is a malignancy of skin resident effector memory T cells.


Author(s):  
Mashael Alabed ◽  
Asma Sultana Shaik ◽  
Narjes Saheb Sharif-Askari ◽  
Fatemeh Saheb Sharif-Askari ◽  
Shirin Hafezi ◽  
...  

Memory T cells play a central role in regulating inflammatory responses during asthma. However, tissue distribution of effector memory (T<sub>EM</sub>) and central memory (T<sub>CM</sub>) T-cell subtypes, their differentiation, and their contribution to the persistence of lung tissue inflammation during asthma are not well understood. Interestingly, an increase in survival and persistence of memory T cells was reported in asthmatic lungs, which may suggest a shift toward the more persistent T<sub>CM</sub> phenotype. In this report, we investigated the differential distribution of memory T-cell subtypes during allergic lung inflammation and the mechanism regulating that. Using an OVA-sensitized asthma mouse model, we observed a significant increase in the frequency of T<sub>CM</sub> cells in inflamed lungs compared to healthy controls. Interestingly, adoptive transfer techniques confirmed substantial infiltration of T<sub>CM</sub> cells to lung tissues during allergic airway inflammation. Expression levels of T<sub>CM</sub> homing receptors, CD34 and GlyCAM-1, were also significantly upregulated in the lung tissues of OVA-sensitized mice, which may facilitate the increased T<sub>CM</sub> infiltration into inflamed lungs. Moreover, a substantial increase in the relative expression of T<sub>CM</sub> profile-associated genes (EOMES, BCL-6, ID3, TCF-7, BCL-2, BIM, and BMI-1) was noted for T<sub>EM</sub> cells during lung inflammation, suggesting a shift for T<sub>EM</sub> into the T<sub>CM</sub> state. To our knowledge, this is the first study to report an increased infiltration of T<sub>CM</sub> cells into inflamed lung tissues and to suggest differentiation of T<sub>EM</sub> to T<sub>CM</sub> cells in these tissues. Therapeutic interference at T<sub>CM</sub> infiltration or differentiations could constitute an alternative treatment approach for lung inflammation.


Blood ◽  
2007 ◽  
Vol 109 (11) ◽  
pp. 4671-4678 ◽  
Author(s):  
Ji-Yuan Zhang ◽  
Zheng Zhang ◽  
Xicheng Wang ◽  
Jun-Liang Fu ◽  
Jinxia Yao ◽  
...  

Abstract The immunoreceptor PD-1 is significantly up-regulated on exhausted CD8+ T cells during chronic viral infections such as HIV-1. However, it remains unknown whether PD-1 expression on CD8+ T cells differs between typical progressors (TPs) and long-term nonprogressors (LTNPs). In this report, we examined PD-1 expression on HIV-specific CD8+ T cells from 63 adults with chronic HIV infection. We found that LTNPs exhibited functional HIV-specific memory CD8+ T cells with markedly lower PD-1 expression. TPs, in contrast, showed significantly up-regulated PD-1 expression that was closely correlated with a reduction in CD4 T-cell number and an elevation in plasma viral load. Importantly, PD-1 up-regulation was also associated with reduced perforin and IFN-γ production, as well as decreased HIV-specific effector memory CD8+ T-cell proliferation in TPs but not LTNPs. Blocking PD-1/PD-L1 interactions efficiently restored HIV-specific CD8+ T-cell effector function and proliferation. Taken together, these findings confirm the hypothesis that high PD-1 up-regulation mediates HIV-specific CD8+ T-cell exhaustion. Blocking the PD-1/PD-L1 pathway may represent a new therapeutic option for this disease and provide more insight into immune pathogenesis in LTNPs.


2006 ◽  
Vol 36 (6) ◽  
pp. 1453-1464 ◽  
Author(s):  
Katharina M. Huster ◽  
Martina Koffler ◽  
Christian Stemberger ◽  
Matthias Schiemann ◽  
Hermann Wagner ◽  
...  

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 512-512 ◽  
Author(s):  
Ingrid G Winkler ◽  
Valerie Barbier ◽  
Kristen J Radford ◽  
Julie M Davies ◽  
Jean-Pierre Levesque ◽  
...  

Abstract T-cells are critical mediators of immune defense against pathogens and cancer. Adoptive T cell immunotherapy and T-cell engineering have promising clinical applications but T cell survival and exhaustion are current limitations. Central memory cells (TCM CD62L+ CCR7+) and their precursors, stem central memory T-cells (TSCM) possess the stem-like properties needed to reconstitute and prolong an effective immune response long-term. These cells have been shown to significantly improve therapeutic efficacy of adoptive T-cell therapy. The challenge remains to harvest good quality TCM-cells for these immunotherapy approaches. The bone marrow (BM) is the major reservoir of CD8+ TCM and their precursors. We have previously shown that E-selectin is expressed in the BM vasculature and drives activation and differentiation of hematopoietic stem cells during G-CSF induced mobilization to the blood. We find therapeutic blockade of E-selectin promotes HSC self-renewal and reconstitution in vivo. We now examine the impact of E-selectin blockade on CD8+ T cell mobilization from the bone marrow to the blood and hypothesize that E-selectin blockade may also dampen the activation/differentiation of this subset. First we administered a standard G-CSF regime (filgastim 250ug/kg/day for 3 days) to mice and then dosed some cohorts with GMI-1271 (40mg/kg BID) from 12 to 72 hours within this 3 day period. Administration of G-CSF alone results in a near complete disappearance of bone marrow resident CD8+ TCM cells, and their apparent migration (increase in numbers) to the blood, while CD8+ subsets in the lymph nodes and spleen were barely affected by G-CSF. Furthermore among T-cell subsets, CD8+ but not CD4+ TCM were specifically mobilized into the blood when GMI-1271 was co-administered for the last 12 to 24 hours of G-CSF. These findings are consistent with reports demonstrating the bone marrow to be a major reservoir for CD8+ but not CD4+ central memory T-cells. Administration of GMI-1271 caused a marked enhancement in mobilization into the blood of CD8+ TCM/SCM (CD62Lhi, CCR7+) cells over treatment with G-CSF alone (p<0.05). To determine the functional consequences of this skewed mobilization following GMI-1271 co-administration, 25 uL of mobilized blood was transplanted into irradiated congenic B6.SJL recipients together with 2x105 congenic BM cells to analyze long-term donor T-cell engraftment in the recipient mice. We found G-CSF mobilized donor blood did not contribute CD8+ TCM cells that can persist post-transplant (<0.5% at 20 weeks post-transplant). In contrast when donor mice were mobilized with G-CSF together with E-selectin blockade (GMI-1271), we found elevated levels of donor blood derived CD8+ T-cells demonstrating robust long-term CD8+ T-cell persistence / regeneration (5.3 ±3.2% of total recipient T-cells, p=0.04). This dramatic boost in donor CD8+ T-cell reconstitution in mobilized blood following GMI-1271 co-administration is likely to be due to the long-term persistence and in vivo amplification of CD8+ TCM cells from donor mobilized blood. Similar in vivo enhancing effects of GMI-1271 were also observed with other mobilizing agents such as combined CXCR4 and VLA-4 blockade and GM-CSF resulting in a significant 4.9-fold boost in donor CD8+ reconstitution with GMI-1271. Importantly, only 12 hours of E-selectin blockade was sufficient to achieve this boost in CD8+ TCM numbers in the blood following G-CSF. In a previous report we have shown that therapeutic blockade of E-selectin promotes HSC self-renewal in vivo. Thus, it is possible that E-selectin blockade boosts mobilization of CD8+ TCM/SCM with stem-like properties into the blood by loosening factors retaining CD8+ TCM/SCM in the bone marrow and/or blocking the E-selectin-mediated activation and differentiation of this T-cell subset. In summary, our studies identify E-selectin blockade as a novel target to improve harvesting of CD8+ TCM/SCM cells with stem-like properties. Blockade of this target with GMI-1271 significantly improves the in vivo reconstitution potential and regenerative properties of CD8+ T-cells from donor blood allowing a valuable source of desired T-cells for use in adoptive immunotherapy and T-cell engineering. Disclosures Winkler: GlycoMimetics Inc: Research Funding. Barbier:GlycoMimetics Inc: Research Funding. Davies:GlycoMimetics Inc: Research Funding. Smith:GlycoMimetics, Inc.: Employment. Fogler:GlycoMimetics, Inc.: Employment. Magnani:GlycoMimetics Inc: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


PLoS ONE ◽  
2019 ◽  
Vol 14 (9) ◽  
pp. e0223258 ◽  
Author(s):  
Benjamin Faist ◽  
Fabian Schlott ◽  
Christian Stemberger ◽  
Kevin M. Dennehy ◽  
Angela Krackhardt ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3242-3242
Author(s):  
Robbert van der Voort ◽  
Claudia Brandao ◽  
Thomas J. Volman ◽  
Viviènne Verweij ◽  
Klaas van Gisbergen ◽  
...  

Abstract Abstract 3242 Although the importance of the bone marrow (BM) in hematopoiesis is well known, its function in adaptive immune responses has only recently been acknowledged. Currently it is known that the BM contains fully functional CD4+ and CD8+ T cells that can engage in both primary and secondary immune responses. Interestingly, most of these T cells belong to the memory T cell lineage, identifying the BM as one of the largest memory T cell reservoirs in the body. Since not much is known about the trafficking of BM T cells, we compared the homing phenotype and function of T cell subsets in the BM, blood, spleen and peripheral lymph nodes (pLN). In addition, we determined the expression of chemokine mRNA and protein levels in the BM and other lymphoid organs. We confirmed that at least 80% of the CD4+ and 60% of the CD8+ BM T cells have a memory phenotype, and that most CD4+ T cells belong to the effector memory lineage, while the CD8+ population predominantly consists of central memory T cells. Most BM T cells expressed the chemokine receptor CXCR3, the adhesion molecules P-selectin glycoprotein ligand 1 and VLA-4, and increased levels of CD44 and LFA-1, as compared to T cells from the spleen. In addition, L-selectin was absent from most CD4+ BM T cells, but present on virtually all CD8+ T cells. Notably, the percentage of CXCR3+ T cells within the effector memory and central memory subsets from BM was higher than within the same subsets from pLN. Furthermore, BM contained significant mRNA levels of the CXCR3 ligands CXCL9, CXCL10 and CXCL11. An in vivo migration assay using a mixture of fluorescent-labeled T cells from CXCR3-deficient mice and control mice indicated however that during homeostasis CXCR3 does not play a major role in BM entry or retention. These data suggest that CXCR3 expressed by memory T cells is rather involved in BM exit, than in BM entry. Indeed, we observed that, as compared to control mice, CXCR3−/− mice contained significantly more CD4+ and CD8+ T cells in their BM. Additional in vitro assays demonstrated that CD4+ and CD8+ BM T cells migrated vigorously in response to CXCL9 and CXCL10, generally released in high concentrations during inflammation. Finally, we demonstrate that CXCR3−/− effector/effector memory T cells, but not wild type T cells, accumulate in the BM of mice infected with lymphocytic choriomeningitis virus. Altogether, these data demonstrate that the BM is a major reservoir of memory T cells that employ CXCR3 to quickly respond to chemotactic signals from inflamed tissues. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4805-4805
Author(s):  
Tzu-Yun Kuo ◽  
Aisha Hasan ◽  
Richard J O'Reilly

Abstract Initial clinical trials of adoptive immunotherapy have shown that the efficacy of adoptively transferred T-cells in man is often limited by the failure of cultured T cells, particularly cloned CD8 T cells, to persist in vivo. These studies demonstrated that the transferred T cells induced only transient responses and that persistence of the transferred T-cell clonotypes correlated with disease regression. A previous study suggested that CMV virus-specific CD8 T cell clones derived from central memory T cells (TCM), but not effector memory T cells (TEM), persisted long-term in non-human primates. On the other hand, another study comparing TCM and TEM derived SIV virus specific CD8 T-cell clones that were adoptively transferred in non-human primates demonstrated limited persistence of both TCM and TEM derived transferred T cells, and failed to show any difference between the two cell types. Because of these conflicting data, we have reexamed the persistence of adoptively transferred viral antigen specific T-cells derived from TCM and TEM population. Accordingly, we developed a NOG mouse model for studying the ability of human CMVpp65-specific T cells derived from central memory and effector memory populations to migrate to and accumulate in human tumor xenografts expressing CMVpp65, to alter the growth of these tumors and to persist in the tumors. This model also allows us to test immunomodulating agents and their ability to enhance targeted T-cell accumulations, antitumor activity and persistence. We analyzed CMVpp65-specific CD8 T cells derived from TCM and TEM precursors in vitro and in vivo. To tract the T-cells in vivo, we transduced membrane-bound Gaussia luciferase into TCM and TEM populations and monitored T cell trafficking by in vivo bioluminescence. Contrary to expectation, our results initially showed no differences between TCM and TEM derived CMVpp65-specific T-cell in mice co-treated with IL-2 in the time to accumulation, ultimate level of accumulation, degree of CMVpp65+ tumor regression or T-cell persistence. However, in mice cotreated with IL-15/IL-15Rα complex, both TCM and TEM exhibited more sustained engraftment and more prolonged accumulation in both the targeted tumor and in the marrow. In mice treated with IL-15/IL-15Rα, TCM and TEM derived T cells showed a similar effector memory phenotype and a similar level of regression of tumor growth. Thus, adoptive transfer of CMVpp65 specific TCM or TEM when combined with IL-15/IL-15Rα complex may support better persistence of antigen-specific T-cells following adoptive immunotherapy. Studies comparing IL-15/IL-15Rα complex with IL-15 alone are in progress. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document