Decreased Incidence of GvHD after Reduced Intensity Conditioning and a Fixed T-CELL Dose in Hematological Malingnancy Patients

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5889-5889 ◽  
Author(s):  
Audrey Simon ◽  
Eddy Roosnek ◽  
Yordanka Tirefort ◽  
Yan Beauverd ◽  
Carole Dantin ◽  
...  

Abstract Introduction: To decrease graft versus host disease (GvHD), the Geneva transplantation team has performed allogeneic hematopoietic stem cell (alloHSCT) with reduced intensity conditioning (RIC) and T cell depletion (TCD) to treat hematological malignancies for older or non fit for myeloablative conditioning patients. This is a new approach of engineering stem cell products that lowers the risk of GvHD while preserving graft versus leukemia (GvL) as much as possible. Patient and methods: We report a retrospective study of 73 patients who received alloHSCT with RIC and TCD between 2001-2013. The median age was 59 years (21-70), 60% were male. Disease at transplant time was acute leukaemia for 45%, Hodgkin lymphoma and non-Hodgkin lymphoma for 24%, myelodysplastic disorders for 13%, myeloproliferative disorders for 9,3 % and multiple myeloma for 8%. Source of stem cell was peripheral in 96% of the cases. 41% of the donors were matched related donor, 37% matched unrelated donor, 19% mismatched unrelated donor and 3% mistmatched related donor. The conditioning regimen consisted on fludarabine with busulfan or melphalan and ATG. Extensive T-cell depletion was done using Campath in the bag followed by washing procedures to remove free antibody. Fixed number of CD3+ T-cell addback was given on d+1 to preserve GvL with minimal residual disease (MRD) assessment and early donor lymphocyte infusions (DLI) given if MRD positive. Doses of DLI were preserved and frozen at the time of stem cell harvest. GvHD prophylaxis was with ciclosporine and mycophenolate mofetil. Results: With a median follow up of 5 (0.5-11) years, the 5-year overall survival (OS), disease free survival (DFS), current disease free survival, relapse rate and non relapse mortality (NRM) were 41.7% (95%CI 30.7-53.7%), 38.8% (95%CI 28.8-50.8%), 39,5% (95%CI 27.7-51.7%), 45.3% (95%CI 32.7-57.2%) and 15.8% (95%CI 8.3-25.4%) respectively. The main cause of death was relapse 38.7 % followed by GvHD 17% and infection 1.3%. In this cohort, the cumulative incidence (CI) of acute GvHD was 15.1% (95% CI: 8.0-24.3%) as well as for acute GvHD grade II-IV. CI of chronic GvHD was 14.7% (95%CI:7.2-23.6%) with extensive chronic GvHD CI being 5.9% (95% CI: 1.9-13.4%). Five patients received DLI for relapses, 27 for mixed chimerism and 8 for both causes. The average number of DLI was 2. Twenty-eight patients entered CR, 4 PR and 13 did not respond to DLI. In univariate analysis, two factors GvHD before DLI and GvHD after first DLI have a tendency for favorable impact on OS respectively p=0.093 and 0.071. For DFS, two factors are significant: disease risk index and GvHD after first DLI respectively p=0.013 and 0.044. For NRM disease risk index is the only factor which is statistically significant p=0.005. For relapse no factors were significant. Discussion: Our study showed a lower rate of acute and chronic GvHD as compared to other studies with unmanipulated stem cells. However, we describe a high rate of relapse incidence and relapse mortality. We have found in univariate analysis two factors statistically significant for DFS GvHD before and after first DLI. Our cohort is a heterogeneous group with different diseases at different stages, which can explain those results. It’s a monocentric study and small number of patient can be a limit for this work. Of note, since 2009 we have changed our strategy introducing a day +100 preemptive DLI infusion in the absence of GvHD, with escalading doses of lymphocytes every 8 weeks up to 5x 107 CD3/kg in the absence of GvHD to improve response. We don’t have enough patients and follow up to draw any conclusion regarding this new strategy. To improve the outcomes, the selection of patients who may receive partial T-cell depletion should be refined, avoiding transplanting patients with high risk of relapse with this strategy. To help decision making, the revised disease risk index as presented by Armand et al. (Blood 2014;123:3664) may be useful. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3204-3204
Author(s):  
Federico Simonetta ◽  
Stavroula Masouridi-Levrat ◽  
Yan Beauverd ◽  
Olga Tsopra ◽  
Yordanka Tirefort ◽  
...  

Abstract Introduction: Allogeneic hematopoietic stem cell transplantation (HSCT) is a well-established therapeutic modality for a variety of hematological malignancies. Unfortunately it is associated with significant morbidity and mortality related to cancer relapse and transplant complications, including graft versus host disease (GvHD). GvHD-free, relapse-free survival (GRFS) is a recently reported composite end point which allows estimating risk of death, relapse and GvHD simultaneously [Holtan et al., Blood 2015 ]. T-cell depletion (TCD) is a well established strategy for GvHD prevention, but is probably associated with increased risk of relapse. In the present work we investigated the effect of partial TCD (pTCD) on GRFS in order to evaluate its impact on patientsÕ morbidity-free survival. Patients and methods: We performed a retrospective study on 333 patients who underwent allogeneic HSCT for hematologic malignancies at our center from 2004 to 2014 with grafts from HLA identical siblings or HLA 10/10 matched unrelated donors. 171 patients received pTCD grafts, obtained through incubation with alemtuzumab in vitro washed before infusion followed on day +1 by an add-back of donor T cells. 162 patients received T cell repleted (non-TCD) grafts. Donor lymphocyte infusions were given at three months to all patients without GvHD who had received pTCD grafts with reduced intensity conditioning and when needed to patients, transplanted with either pTCD or non-TCD grafts with mixed chimerism. Kaplan-Meier estimates were employed to determine the probability of 1-year and 5-year overall survival (OS), progression free survival (PFS) and GRFS. Events determining GRFS included grade 3-4 acute GvHD, systemic therapy-requiring chronic GvHD, relapse, or death. Differences between survival curves were determined using Log-rank Mantel-Cox test. Cox regression was used to examine the independent effect on OS, PFS and GRFS of clinical factors including age, underling disease, disease status at transplant, disease risk index, conditioning, donor type, stem cell source, year of transplantation and T-cell depletion. Cumulative incidence estimates of relapse and non-relapse mortality (NRM) were calculated with relapse or death from other causes defined as competitive events with the Fine and Gray method. Results: According to institutional practices, the group receiving pTCD grafts comprised more patients transplanted in complete remission (67%) than the group receiving non-TCD grafts (41%, p <0.0001). Similarly, the pTCD group comprised fewer patients with a high/very high disease risk index (17%) than the non-TCD group (51%, p <0.0001). pTCD was associated with improved 1-year and 5-year OS and PFS in univariate analysis, but this association failed to reach significance in multivariate analysis taking into account clinical factors differing among patients groups. pTCD was associated with significantly improved GRFS (1y 53.2%, 95%CI 45.4%-60.4%; 5y 40.3%, 95%CI 32.5%-47.9%) compared to non-TCD transplantations (1y 36.6%, 95%CI 29.1%-44.0%, p<0.0001; 5y 24.1%, 95%CI 17.1%-31.9%, p<0.0001) [Figure 1]. The effect of pTCD on GRFS remained highly significant in multivariate analysis performed taking into account clinical factors including disease status at transplant and disease risk index (1y HR 0.624, 95%CI 0.440-0.884, p=0.0079; 5y HR 0.625, 95%CI 0.454-0.861, p=0.0040). No effect of pTCD was observed on relapse cumulative incidence (1y pTCD 37.4%, 95%CI 29.9%-45%, non-TCD 33.3%, 95%CI 26.3%-40.5%, p=0.317; 5y pTCD 49.4%, 95%CI 40.4%-57-9%, non-TCD 47.2% 95%CI 39%-54.9%, p=0.396), although this result may be the consequence of aforementioned differences in patient groups studied. Conversely, 1-year and 5-year NRM cumulative incidence was significantly decreased in patients receiving pTCD (1y 4.8% 95%CI 2.2%-8.7%; 5y 9.7%, 95%CI 5.6%-15%) compared to patients receiving non-TCD allogeneic HSCT (1y 12.5%, 95%CI 7.9%-18.2%, p=0.0098; 5y 15.9% 95%CI 10.5%-22.2%, p=0.0449). Conclusion: pTCD appears to improve GRFS in allogeneic HCST recipients without significantly affecting OS and PFS. These results extend our knowledge about the effects of TCD on transplant-related morbidity and mortality, suggesting that pTCD could improve patientsÕ quality of life by reducing acute GvHD and NRM without impairing the curative potential of allogeneic HSCT. Figure 1. Impact of pTCD on GRFS. Figure 1. Impact of pTCD on GRFS. Disclosures Chalandon: Roche: Honoraria, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2013-2013
Author(s):  
Prathima Anandi ◽  
Xin Tian ◽  
Puja D. Chokshi ◽  
Noelle Watters ◽  
Sawa Ito ◽  
...  

Abstract Introduction: T cell depletion of the stem cell allotransplant (SCT) has the advantage of reducing incidence and severity of GVHD but can be complicated by relapse and infection. An optimum residual T cell dose in T depleted SCT is not known. To optimize T cell depletion we delivered a series of fixed T cell transplant doses with scheduled T cell add back post-SCT in a series of protocols to determine the T cell doses that secured immune reconstitution, and minimized relapse and infection. Here we retrospectively examined large series of patients (pts) transplanted in a single institution where T cell dose at SCT and add back were quantitated. Unique to these protocols was the precise measurement of CD3 dose/kg at transplant for every patient which enabled us to relate transplant T cell doses to outcome. Patients and methods: 205 pts (106 males, 99 females) underwent HLA identical sibling allogeneic T cell depleted SCT between 1994 and 2014. Diagnosis at SCT included AML (48%), MDS (17%), ALL (27%), CLL (5%), MM (3%). Disease risk at SCT was classified as high (57%) or standard (43%). The median age at SCT was 37 (range: 10-75) yrs. TBI based myeloablative conditioning was used. The graft source was marrow in 20 pts and peripheral blood in 195 pts. GVHD prophylaxis was low dose cyclosporine. Different T cell depleted methods were used consecutively: elutriation, Isolex ®, Cellpro ® CD34, and Miltenyl © CD34 selection. A defined T cell dose was allocated at SCT by protocol ranging from 2 - 50 × 104 CD3+ cells/kg. Various schedules were used to add back T lymphocytes between day 30 to 90 with doses ranging 5 - 60 ×106 CD3+ cells/kg by protocol and no T cell add-back was given in 28 pts in recent protocols. Overall survival (OS) was estimated by the Kaplan-Meier method, and cumulative incidence of relapse and nonrelapse mortality (NRM) was estimated by Gray's method to account for competing risks. Cox proportional hazard regression models were used to assess the association of factors at baseline, day 100 and GVHD with the post-SCT outcomes. Results: At a median follow-up of 8.6 yrs (range: 0.7- 19.8) for surviving pts, 112 pts died (52 from NRM) and 68 pts relapsed. OS was 47%, 43% and 41%, NRM was 24%, 27% and 27%, relapse was 32%, 34% and 38% at 5 yr, 10 yr and 15 yr post SCT, respectively. Grade II-IV and III-IV acute GVHD were 41% and 13%, and chronic GVHD was 42% (25% limited, 17% extensive). In the multivariate models of baseline risk factors that adjusted for age at SCT and disease risk, T-cell doses at SCT did not affect OS, NRM or relapse. A higher dose of CD34+ cells at SCT was significantly associated with better OS and lower NRM. Disease risk was an independent predictor, with high-risk pts having more relapse and worse OS, compared to pts with standard risk. A landmark analysis of 156 pts surviving and relapse-free beyond day 100 was carried out to examine the effects of add back T cell schedules by day 100 and aGVHD. The total T-cell dose at add back by day 100 and different add-back T-cell schedules from day 30-90 had no impact on any outcome, controlling for T-cell dose at SCT. In the models controlling for age, risk, CD34+ and T-cell dose at SCT, pts with grade III-IV aGVHD by day 100 had an increased risk for overall mortality and NRM beyond day 100 (HR= 3 and 3.6, both P<0.001), but did not affect relapse. An analysis of pts surviving and relapse-free beyond 1 yr showed pts with extensive cGVHD had higher NRM rate (39%) and lower relapse rate (0%) after 1 yr post-HSCT compared to pts with no cGVHD ( NRM, 9%, P = 0.020; relapse 24%, P=0.026). Conclusion: These findings indicate that for myeloablative matched sibling SCT there is no ideal prescription of T cell dose at transplant within a range of 104 - 105 or for scheduled add back of lymphocytes within a range of T depletion 5 - 60 × 106. Instead, factors other than T cell dose either at transplant or when add-back was delayed determined GVHD incidence, relapse, and survival. These findings set a limit on the efficacy of any T cell depletion procedure to optimize transplant outcome. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2761-2761
Author(s):  
Peter A. von dem Borne ◽  
Floor Beaumont ◽  
Ingrid Starrenburg ◽  
Machteld A. Oudshoorn ◽  
Geoff Hale ◽  
...  

Abstract In allogeneic stem cell transplantation (SCT) T-cell depletion reduces transplant related mortality by diminishing GVHD. We have investigated a myeloablative regimen for matched unrelated donor SCT using both in vivo and in vitro CAMPATH-1H for effective T-cell depletion, utilising DLI at a later time point for graft versus tumor effect if necessary. Thirty patients (median age 33 years, range 18–48) were transplanted from January 1997 to June 2002. Diagnoses were: CML CP (n=9), CML AP (n=2), AML/MDS (n=9), ALL (n=8), NHL (n=1) and Fanconi anemia (n=1). Six patients had one HLA mismatch, the others were identical for HLA A, B, C, DR and DQ. Conditioning consisted of CAMPATH-1H 5mg/d on days −8 to −4, TBI 6 Gy on days −8 and −7 and cyclofosfamide 60 mg/kg on days −6 and −5. T-cell depletion was performed by in vitro incubation of the graft with 20 mg CAMPATH-1H for 30 minutes (Campath “in the bag”). Post-transplant GVHD prophylaxis consisted of cyclosporine A and methotrexate. The stem cell source was bone marrow in 19 patients (63%) and peripheral blood in 11 patients. One graft failure was observed, all other patients had sustained engraftment of donor cells. Acute GVHD was observed in 12 patients (40%), maximally grade I-II skin. No severe acute GVHD (grade III-IV) was experienced. Limited chronic GVHD developed in 2 patients, resolving after treatment. Only in one patient extensive chronic GVHD developed, which did not resolve. CMV reactivation occurred in 23% of patients, one patient developed CMV disease. No EBV disease was observed. Ten patients received donor lymphocyte infusion (DLI) at a median of 17.4 months after SCT (8 patients with relapsed CML, one patient with relapsed ALL, one patient with autoimmune hemolytic anemia). After DLI acute GVHD grade I-II developed in 4 patients, and GVHD grade III-IV in 3. Chronic GVHD developed in 5 patients, of which 2 extensive, resolving in all except one patient. With a median follow up of 37 (range 21–84) months 17 patients are alive (57%). One of the CML patients shows persistence of molecular disease not responding to increasing doses of DLI. All other patients are in CR with the CML patients in molecular remission. Five patients (17%) died because of relapsed disease (2 AML/MDS and 3 ALL). Treatment related mortality was 26% (1 rejection, 2 GVHD, 1 myocardial infarction, 4 infections). In conclusion, matched unrelated donor SCT following myeloablative conditioning using T-cell depletion with CAMPATH-1H in vivo as well as in vitro results in good engraftment, minimal grade I-II GVHD and an overall survival of 57%. Relapse rate was not increased with this strategy. This regimen appears to be successful for young adults with high-risk malignancies.


2021 ◽  
Vol 12 ◽  
pp. 204062072110637
Author(s):  
Jeongmin Seo ◽  
Dong-Yeop Shin ◽  
Youngil Koh ◽  
Inho Kim ◽  
Sung-Soo Yoon ◽  
...  

Background: Allogeneic stem cell transplantation (alloSCT) offers cure chance for various hematologic malignancies, but graft- versus-host disease (GVHD) remains a major impediment. Anti-thymocyte globulin (ATG) is used for prophylactic T-cell depletion and GVHD prevention, but there are no clear guidelines for the optimal dosing of ATG. It is suspected that for patients with low absolute lymphocyte counts (ALCs), current weight-based dosing of ATG can be excessive, which can result in profound T-cell depletion and poor transplant outcome. Methods: The objective of the study is to evaluate the association of low preconditioning ALC with outcomes in patients undergoing matched unrelated donor (MUD) alloSCT with reduced-intensity conditioning (RIC) and ATG. We conducted a single-center retrospective longitudinal cohort study of acute leukemia and myelodysplastic syndrome patients over 18 years old undergoing alloSCT. In total, 64 patients were included and dichotomized into lower ALC and higher ALC groups with the cutoff of 500/μl on D-7. Results: Patients with preconditioning ALC <500/μl were associated with shorter overall survival (OS) and higher infectious mortality. The incidence of acute GVHD and moderate-severe chronic GVHD as well as relapse rates did not differ according to preconditioning ALC. In multivariate analyses, low preconditioning ALC was recognized as an independent adverse prognostic factor for OS. Conclusion: Patients with lower ALC are exposed to excessive dose of ATG, leading to profound T-cell depletion that results in higher infectious mortality and shorter OS. Our results call for the implementation of more creative dosing regimens for patients with low preconditioning ALC.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Salem Alshemmari ◽  
Reem Ameen ◽  
Javid Gaziev

Haploidentical hematopoietic stem-cell transplantation is an alternative transplant strategy for patients without an HLA-matched donor. Still, only half of patients who might benefit from transplantation are able to find an HLA-matched related or unrelated donor. Haploidentical donor is readily available for many patients in need of immediate stem-cell transplantation. Historical experience with haploidentical stem-cell transplantation has been characterised by a high rejection rate, graft-versus-host disease, and transplant-related mortality. Important advances have been made in this field during the last 20 years. Many drawbacks of haploidentical transplants such as graft failure and significant GVHD have been overcome due to the development of new extensive T cell depletion methods with mega dose stem-cell administration. However, prolonged immune deficiency and an increased relapse rate remain unresolved problems of T cell depletion. New approaches such as partial ex vivo or in vivo alloreactive T cell depletion and posttransplant cell therapy will allow to improve immune reconstitution in haploidentical transplants. Results of unmanipulated stem-cell transplantation with using ATG and combined immunosuppression in mismatched/haploidentical transplant setting are promising. This paper focuses on recent advances in haploidentical hematopoietic stem-cell transplantation for hematologic malignancies.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2305-2305 ◽  
Author(s):  
Robert J Soiffer ◽  
Jennifer LeRademacher ◽  
Vincent T Ho ◽  
Fangyu Kan ◽  
Andrew Artz ◽  
...  

Abstract Abstract 2305 HCT using RIC regimens has increased steadily over the past decade. In vivo administration of anti-T cell antibodies, such as alemtuzumab and anti-thymocyte globulin (ATG) preparations, is often employed to promote engraftment and limit graft-versus-host disease (GVHD). While these antibodies might reduce the severity and incidence of GVHD, they may also blunt the allo-immune graft-versus-tumor effect of HCT. Transplant outcomes after in vivo T-cell depletion (n=584 ATG; n=213 alemtuzumab) were compared to those after T-cell replete (n=879) RIC transplants for myeloid and lymphoid malignancies. Patients were aged 21–69 yrs and transplanted from 2000–2007. Median follow-up of patients is 3 years. Conditioning regimens consisted of an alkylating agent (melphalan, busulfan, or cyclophosphamide) with fludarabine. 792 patients (47%) received allografts from a HLA-matched sibling, 650 (39%) from an 8/8 and 234 (14%) from a 7/8 HLA-matched unrelated donor. In vivo T-cell depletion was used for 35% of matched sibling HCT, 57% of 8/8 and 64% of 7/8 HLA matched unrelated donor HCT. Results of multivariable analysis adjusted for age, disease and disease stage, donor, year of transplant, conditioning regimen, and GVHD prophylaxis are shown in Table below. Grade 2–4 acute GVHD was lower with alemtuzumab containing regimens (20%) than ATG containing (41%) or T replete (42%) regimens. Chronic GVHD occurred in 27% of recipients of alemtuzumab, 43% of ATG, and 57% of T replete regimens, respectively. Compared to T-cell replete regimens, relapse risks were higher with ATG and alemtuzumab containing regimens (38%, 49% and 51%, respectively) and non-relapse mortality, higher with ATG containing regimens only. Treatment failure (relapse or death) was higher with both ATG and alemtuzumab containing regimens compared to T replete regimens. Overall mortality was highest with ATG containing regimens. These observations are independent of disease, disease status and donor type including 7/8 HLA-matched HCT. The 3-year probabilities of disease-free survival (DFS) were 25%, 30% and 39% with ATG-containing, alemtuzumab-containing and T-cell replete regimens, respectively. Corresponding probabilities for overall survival were 38%, 50% and 46%. There were no differences in disease-free and overall survival at 3-years by ATG source or dose. The incidence of EBV-PTLD was higher with alemtuzumab and ATG containing compared to T-cell replete regimens (2% vs. 2% vs. 0.2%). These results suggest in-vivo T-cell depletion with RIC regimens containing an alkylating agent and fludarabine significantly lowers DFS despite lower GVHD. The routine use of in-vivo T-cell depletion in this setting warrants a cautious approach in the absence of a prospective randomized trial. Alemtuzumab vs. T-cell replete ATG vs. T-cell replete Alemtuzumab vs. ATG Hazard ratio, p-value Hazard ratio, p-value Hazard ratio, p-value Grade 2-4 acute GVHD 0.33, p<0.0001 0.88, p=0.12 0.38, p<0.001 Grade 3-4 acute GVHD 0.42, p<0.0001 0.86, p=0.20 0.48, p=0.001 Chronic GVHD 0.34, p<0.0001 0.69, p<0.0001 0.49, p<0.0001 Non-relapse mortality 1.04, p=0.85 1.34, p=0.01 0.78, p=0.19 Relapse 1.54, p=0.0001 1.53, p<0.0001 1.01, p=0.94 Treatment failure 1.40, p=0.0003 1.46, p<0.0001 0.96, p=0.67 Overall mortality 1.09, p=0.46 1.25, p=0.002 0.87, p=0.22 Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 692-692 ◽  
Author(s):  
Peter Lang ◽  
Tobias Feuchtinger ◽  
Heiko-Manuel Teltschik ◽  
Michael Schumm ◽  
Patrick Schlegel ◽  
...  

Abstract T-cell depletion of the graft is an effective method to prevent or completely avoid Graft-versus-Host Disease (GvHD) in haploidentical stem cell transplantation. In order to increase the T-cell depletion efficacy while maintaining the anti-tumor and anti-infectious properties of the graft, we have investigated a new T-cell depletion method which removes αβ+ T-lymphocytes via a biotinylated anti-TcRαβ antibody followed by an anti-biotin antibody conjugated to magnetic microbeads while retaining γδ+ T-lymphocytes, Natural killer (NK) cells and other cells in the graft. In addition, CD19+ B-lymphocytes were concomitantly depleted for the prevention of posttransplant EBV-associated lymphoproliferative disease. The CliniMACS system was used for manipulation of peripheral stem cell grafts from full haplotype mismatched family donors in 35 patients. Results The overall depletion of αβ+ T-cells was highly effective with 4.6 log (range 3.8–5.0). Patients received a median number of only 14 x 103/kg residual αβ+ T-cells. Recovery of CD34+ stem cells was 72%, and the median number of infused CD34+ stem cells was 12 x 106/kg (range 5-38 x 106/kg). Additionally, the patients received 2 types of potential antileukemic effector cells: 107 x 106/kg (range 35 -192 x 106/kg) CD56+ NK-cells and 11 x 106/kg (range 5–30 x 106/kg) γδ+ T-lymphocytes. Diagnoses were ALL (n=20), AML/MDS/JMML (n=9), nonmalignant diseases (n=4), solid tumors (n=2); disease status: CR2-CR6 (n=17), active disease (n=18). 23 patients received a second or third SCT (65%). A toxicity reduced conditioning regimen (fludarabin 40mg/m² or clofarabin 50mg/m² (day -8 to d -5), thiotepa 10mg/kg (d -4), melphalan 70mg/m² (d -3 and d -2) was used. The anti CD3 specific OKT3 antibody was used as rejection prophylaxis from day -8 to day -1 without affecting cotransfused effector cells because of its short half-life period in the first 7 patients. However, due to its restricted availability, the substance was substituted since 2011 by a reduced ATG-F dose (15mg/kg) given at start of the conditioning regimen in order not to impair NK and γδ+ T-cells of the grafts (1 mg/kg d -12, 4 mg/kg d -11, 5 mg/kg d -10 and -9; n=28 patients). Short course MMF (until day +30) was given in 25 patients. Graft rejection occurred in 14% of the patients. However, after reconditioning and second stem cell donation, final engraftment was achieved in all patients. The median time to reach neutrophil and platelet recovery in patients with primary engraftment was 10 and 11 days respectively. All patients showed a rapid immune reconstitution with 250 (OKT3 conditioning) and 273 (ATG conditioning) CD3+ T-cells/µl, 30 (OKT3) and 47 (ATG) CD3+4+/µl and 300 (OKT3) and 382 (ATG) CD56+ NK-cells/µl at day +30 posttransplant. γδ+ T-cells started to expand faster than αβ+ T-cells in the early post-transplant period (156 vs. 82 cells/µl at day +30) whereas at day +90, αβ+ T-cells were predominant (170 vs. 134 cells/µl). Acute GvHD grade 0-I occurred in 25 patients (71%); 6 patients had GvHD II (17%), 3 patients had GvHD III (9%) and one patients experienced GvHD grade IV (3%). 3 patients experienced chronic GvHD (8%). Incidence of acute GvHD was not influenced by the number of residual T cells or by the type of serotherapy. 1 year EFS for patients with acute leukemias was 66% (any CR) and 14% (active disease).TRM at 1 year was 20%. Conclusions These data indicate that transplantation of TcR αβ+/CD19 depleted cells from a haploidentical donor results in sustained engraftment, remarkably fast immune reconstitution and low incidence of both acute and chronic GvHD. OKT3 could be substituted by ATG without negative effects. The anti-leukemic efficacy of this approach in comparison to other methods of T-cell depletion needs to be evaluated with a longer patient follow-up. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 547-547 ◽  
Author(s):  
John Koreth ◽  
Kwang Woo Ahn ◽  
Joseph Pidala ◽  
James L. Gajewski ◽  
Hailin Wang ◽  
...  

Abstract In myeloablative unrelated donor allogeneic hematopoietic cell transplantation (HCT) a 1-locus HLA-mismatch (-A, -B, -C, -DRB1) is associated with lower survival compared to fully matched pairs. However data in reduced-intensity and non-myeloablative conditioning (together called RIC) HCT are limited. We analyzed adult AML/ALL/CML/MDS recipients of first 8/8 HLA-matched or 1-locus mismatched unrelated donor (MUD, MMUD) RIC HCT performed in the period 1999-2011 and registered in the CIBMTR. HLA-A, -B, -C and -DRB1 loci were typed in all pairs at high resolution; -DQB1 and -DPB1 loci could not be evaluated in all pairs. Transplants involving ex-vivo T-cell depletion, CD34+ selection, or post-transplant cyclophosphamide were excluded. Overall survival (OS) was the primary outcome. Secondary outcomes included non-relapse mortality (NRM), relapse, disease-free survival (DFS) and acute and chronic GVHD. Individual locus mismatch was also assessed. Apart from HLA matching, variables related to patient (age, race, sex, KPS, diagnosis, disease-risk), donor (age, parity), both (sex match/ABO match/CMV match) treatment (conditioning intensity, TBI use, in-vivo T-cell depletion (ATG), graft source (PB, BM) and GVHD prophylaxis (CyA-, Tac-based)) were considered. 2588 RIC HCT (8/8 MUD: 2025; 7/8 MMUD: 563) from 144 centers and 12 countries were analyzed. Median follow up in 8/8 MUD and 7/8 MMUD was 38 and 48 months respectively. Diagnoses were AML (65%), ALL (8%), CML (7%), MDS (20%). Conditioning intensity was RIC (79%), NMA (21%). 58% received in-vivo T-cell depletion. Graft source was PBSC (85%), BM (15%). GVHD prophylaxis was Tac-based (70%), CyA-based (27%). Mismatches involved HLA-A (188), -B (81), -C (219), and -DRB1 (75); with -DPB1 and -DQB1 typing available in 1382 and 2502 cases respectively. Compared to 8/8 MUD, 7/8 MMUD recipients were more likely to be younger and ethnic minorities and to have older and parous donors. In univariate analyses DQB1- and -DPB1 mismatch was not associated with worse OS, DFS, or NRM and was not further evaluated. There was a trend toward more grade II-IV acute GVHD in -DPB1 double (p=0.02) but not single mismatches. In multivariate models 7/8 MMUD RIC HCT had worse grade II-IV and III-IV acute GVHD, NRM, DFS and OS, but not relapse or chronic GVHD (Table). No significant interactions were identified between degree of HLA matching and other clinical variables. Adjusted 1- and 3-year NRM for 8/8 MUD vs. 7/8 MMUD was 20.4% vs. 28.9% (p<0.0001) and 29.2% vs. 38.1% (p<0.0007) respectively. Adjusted 1- and 3-year OS was 54.7% vs. 48.8% (p=0.01) and 37.4% vs. 30.9% (p=0.005) respectively (Figure). There was no difference between allele and antigen mismatches. HLA-A, -B, -C, and -DRB1 locus mismatches were each associated with 1 or more impaired outcomes (acute GVHD, NRM, DFS, and/or OS). Table 1 7/8 vs. 8/8 HLA HR (95% CI) p-value Acute GVHD II-IV 1.29 (1.09-1.53) 0.003 Acute GVHD III-IV 1.69 (1.00-3.36) 0.05 Chronic GVHD 1.11 (0.96-1.28) 0.15 Relapse 1.01 (0.87-1.17) 0.92 NRM 1.52 (1.29-1.79) <0.0001 DFS 1.20 (1.07-1.34) 0.0015 OS 1.25 (1.11-1.40) 0.0001 Compared to 8/8 MUD, both 7/8 allele and antigen MMUD RIC HCT have greater treatment toxicity and worse survival, of a magnitude similar to that seen in myeloablative transplantation. An isolated mismatch at HLA-A, -B, -C, or -DRB1 was associated with 1 or more adverse outcomes. In unrelated donor RIC HCT, matching for all alleles of HLA-A, -B, -C and -DRB1 loci results in superior outcomes. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3912-3912 ◽  
Author(s):  
Maria Chiara Finazzi ◽  
Cristina Boschini ◽  
Janice Ward ◽  
Charles Craddock ◽  
Alessandro Rambaldi ◽  
...  

Abstract Introduction Graft-versus-Host Disease (GvHD) is one of the leading causes of mortality and morbidity following allogeneic stem cell transplant. In vivo T cell depletion by alemtuzumab as part of the transplant conditioning is an effective strategy to reduce the risk of GvHD. While it is recognised that the overall incidence of GvHD is reduced by alemtuzumab, the incidence of chronic GvHD as defined by the National Institute of Health (NIH) consensus criteria, the impact on outcome, and the pattern of organ involvement have not been defined yet in this transplant setting. Methods Consecutive patients (n = 323) undergoing allogeneic stem cell transplantation at the Queen Elizabeth Hospital, Birmingham, between January 1 2008 and June 30 2012 were reviewed in this retrospective, single centre study. Medical records were examined and data regarding the development of GvHD were collected; NIH consensus criteria for diagnosis and staging of chronic GvHD were stringently applied. Clinical characteristics of GvHD occurring in patients transplanted following T cell depletion by alemtuzumab administration (n=248) were compared with those of patients transplanted with a T cell replete graft (n=75). Patients receiving alemtuzumab were mainly treated with reduced-intensity conditioning protocols, while patients in the no-T-cell depletion group were mainly treated with a myeloablative, sibling transplant. Results After a median follow up of 38.4 months, the cumulative incidence (CI) of grade II-IV classic acute GvHD was 35% and 48% for patients transplanted respectively with or without T cell depletion by alemtuzumab (p= 0.041, Figure 1); with a CI of grade III-IV classic acute GvHD of 13% and 27% (p=0.007). The 2-years CI of grade II-IV late acute GvHD was not significantly different in the two groups (20% and 23% for patients respectively treated with or without alemtuzumab, p=0.589, Figure 2). T cell depletion by alemtuzumab significantly reduces the 3 years cumulative incidence of classic chronic GvHD (5% versus 31%, p<0.0001, Figure 3.A), but without a significant difference in the incidence of overlap syndrome between patients with and without T cell depletion (3 years CI respectively 6% and 7%, p=0.839, Figure 3.B). The pattern of organ involvement by classic acute GvHD was similar in patients with and without T cell depletion. The pattern of organ involvement by late acute GvHD in the alemtuzumab group was, however, significantly different compared to the T cell replete group (skin-gut-liver involvement reported respectively in 83%-28%-4% of patients and 56%-48%-20% of patients, p=0.003). Distribution of organ involvement by classic chronic and overlap syndrome was similar in the two groups; however, it seems that alemtuzumab prevents the development of lung GvHD (lung GvHD developed in 4 patients over the 75 patients of the no-T-cell depletion group, while none of the 248 patients transplanted with alemtuzumab experienced lung GvHD). In a multivariate analysis, the development of chronic GvHD was an independent predictor of higher mortality risk (HR 1.66, p = 0.04) and severe NIH global score at peak was confirmed as a poor prognostic factor for survival (HR 2.27, p=0.02). The negative impact of chronic GvHD and of the severe forms of chronic GvHD was independent of age and alemtuzumab administration. Conclusion This retrospective analysis provides for the first time data on the incidence rates of NIH-defined GvHD categories in patients transplanted after T cell depletion by alemtuzumab. Patients transplanted with alemtuzumab experienced a lower incidence of classic acute and classic chronic GvHD compared to patients not receiving T cell depletion. In contrast, alemtuzumab conditioning appeared to have no effect on the incidence of late acute GvHD or overlap syndrome, suggesting that these two entities of GvHD are driven by different immunological mechanisms as compared to classic acute and classic chronic GvHD. We also confirmed the utility of the NIH classification of GvHD and of the NIH global severity score to predict survival in alemtuzumab-conditioned allogeneic stem cell transplant. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3115-3115
Author(s):  
Scott R. Solomon ◽  
Melissa Sanacore ◽  
Xu Zhang ◽  
Katelin Connor ◽  
Melhem Solh ◽  
...  

Abstract In vivo T Cell Depletion with Thymoglobulin or Alemtuzumab Is Associated With Worse Outcome Following Allogeneic Hematopoietic Stem Cell Transplantation for Acute Myeloid Leukemia Patients Transplanted in Remission. Allogeneic hematopoietic stem cell transplantation (HSCT) reduces relapse risk in adults with acute myeloid leukemia (AML) due in large part to the potent graft-versus-leukemia effect of donor lymphocytes. However, this benefit must be balanced by the increased morbidity and mortality associated with graft-versus-host disease (GVHD). Serotherapy, in the form of thymoglobulin or alemtuzumab, has been used for in vivo T cell depletion as a strategy to reduce GVHD. We analyzed 144 consecutive AML patients transplanted in remission (CR1 - 111, CR≥2 - 33) from either a matched related (MRD, n=44), unrelated (MUD, n=62), or haploidentical (haplo, n=38) marrow of PBSC donor, in order to analyze the effect of serotherapy, in relation to other disease-, patient- and transplant-related risk factors, on post-transplant outcomes. Patients were transplanted at a single institution between 3/15/06 to 12/19/14. Baseline characteristics of the patient cohort included age >50 in 88 (61%), KPS<90 in 93 (65%), CMI ≥3 in 61 (42%) of patients. Disease risk index (DRI) was defined as low, intermediate, and high in 5 (4%), 110 (76%), and 29 (20%) patients respectively per the revised Dana Farber/CIBMTR criteria. Myeloablative chemotherapy was given in 96 (67%) patients, and PBSC was the source of stem cells in 120 (83%) patients. Serotherapy was utilized in 21 (15%) patients [thymoglobulin - 8, alemtuzumab - 13]. Serotherapy patients were more likely to be older (median age 59 vs. 52 years, p=0.013) and have a MUD (81% vs. 37%, p<0.001), but otherwise had similar baseline characteristics in regards to disease status, DRI, regimen intensity. Acute GVHD grade II-IV occurred in 38% of patients, whereas chronic GVHD was seen in 44%. Chronic GVHD occurred less often in patients receiving serotherapy (19% vs. 49%, p=0.016). Estimated one year non-relapse mortality (NRM) at 1 and 3 years was 4% and 13% respectively and was statistically similar in serotherapy and non-serotherapy patients. The estimated 3 year OS, DFS, and relapse was 58%, 51%, and 37% respectively for the whole cohort; 64%, 55%, and 33% in non-serotherapy patients vs. 29%, 27%, and 57% in serotherapy patients (figure 1). Cox analysis was performed utilizing the following variables: age, disease status, DRI, KPS, CMI, transplant type (MRD, MUD, haplo), conditioning intensity, stem cell source, use of serotherapy, year of transplant, acute and chronic GVHD. Variables were selected by a 10% threshold. Acute and chronic GVHD were modeled as time-dependent variables. In multivariate analysis, unfavorable risk factors for survival included only two variables: the use of serotherapy (HR 3.11, p<0.001) and high risk DRI (HR 1.89, p=0.038). Use of serotherapy also had a negative effect on relapse (HR 2.69, p=0.003) and DFS (HR 2.73, p<0.001), with no effect on NRM. Following allogeneic HSCT for AML patients in remission, the use of serotherapy for in vivo T cell depletion had a major negative impact on survival due to increased relapse risk. Figure 1. Figure 1. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document