scholarly journals Single-Cell-State Culture of Human Pluripotent Stem Cells Increases Transfection Efficiency

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2037-2037
Author(s):  
Takenobu Nii ◽  
Hiroshi Kohara ◽  
Tomotoshi Marumoto ◽  
Tetsushi Sakuma ◽  
Takashi Yamamoto ◽  
...  

Abstract Human pluripotent stem cells (hPSCs), such as human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), have the potential to self-renew indefinitely and differentiate into various cell types. hPSCs can differentiate into various stem or progenitor cell populations used for regenerative medicine and drug development. Newly developed genome editing technology has advanced the use of hPSCs for such purposes. However, to fully utilize hPSCs to achieve this goal, more efficient gene transfer methods under defined conditions are required. Development of efficient genome editing methods, such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9), for use in hPSCs holds great promise in the fields of basic and clinical research. Among these methods, TALENs are more efficient and safer for use in hPSCs to achieve specific gene editing, as ZFNs had a low gene editing efficiency and CRISPR/Cas9 was accompanied by more severe off-target effects than TALENs. Electroporation is a widely used transfection method for hPSC genome editing; however, this method results in reduced cell viability and gene editing efficiency. In the past decade, various methods were developed for gene transfer into hPSCs; however, hPSCs form tightly packed colonies, making gene transfer difficult. In this study, we established a culture method of hPSCs at a single-cell-state to reduce cell density, and investigated gene transfection efficiency followed by gene editing efficiency. hPSCs cultured in a single-cell-state were transfected using non-liposomal transfection reagents with plasmid DNA driven by the human elongation factor 1-alpha 1 (EF1α) promoter or mRNA encoding enhanced green fluorescent protein (eGFP). The proportion of eGFP+ cells considerably increased in single-cell-state cultures (DNA: 95.80 ± 2.51%, mRNA: 99.70 ± 0.10%). Moreover, most of the cells were viable (control: 93.10 ± 0.40%, DNA: 83.40 ± 2.03%, mRNA: 86.71 ± 0.19%). The mean fluorescence intensity (MFI) was approximately three-fold higher than that in cells transfected by electroporation (electroporation (EPN): 6631 ± 992; transfection (TFN): 17933 ± 1595). eGFP expression was detected by fluorescence microscopy until day seven post-transfection. Our results also demonstrate an inverse correlation between cell density and transfection efficiency. To test whether transfection using this method affected the "stemness" of hPSCs, we examined SSEA4 and NANOG expression in eGFP-transfected cells by flow cytometry analysis. The percentage of both SSEA4+ and NANOG+ cells was greater than 90%. Moreover, transplantation of eGFP-transfected cells into immunodeficient mice led to the formation of teratomas. These results strongly suggested that single-cell-state hPSC culture improved transfection efficiency without inducing differentiation or loss of pluripotency. Moreover, we used our efficient transfection method to edit the hPSC genome using TALENs. We constructed a Platinum TALEN driven by the EF1α promoter targeting the adenomatous polyposis coli (APC) gene and analyzed the efficiency of gene editing using the Cel-1 assay. Our efficient transfection method induced mutations more efficiently than electroporation (Transfection: 11.1 ± 1.38%, Electroporation: 3.2 ± 0.89). These results showed that TALENs increased gene editing efficiency in single-cell-state hPSC cultures. Overall, our efficient hPSC transfection method using single-cell-state culture provides an excellent experimental system to investigate the full potential of hPSCs. We expect that this method may contribute to the fields of hPSC-based regenerative medicine and drug discovery. Disclosures No relevant conflicts of interest to declare.

2016 ◽  
Vol 5 (1) ◽  
pp. 127-136 ◽  
Author(s):  
Takenobu Nii ◽  
Hiroshi Kohara ◽  
Tomotoshi Marumoto ◽  
Tetsushi Sakuma ◽  
Takashi Yamamoto ◽  
...  

2021 ◽  
Vol 4 (4) ◽  
pp. 491-501
Author(s):  
Alireza Shahryari ◽  
Noel Moya ◽  
Johanna Siehler ◽  
Xianming Wang ◽  
Ingo Burtscher ◽  
...  

2021 ◽  
Author(s):  
Nupur Bhargava ◽  
Priya Thakur ◽  
Thulasi Priyadharshini Muruganandam ◽  
Shashank Jaitly ◽  
Pragya Gupta ◽  
...  

Disease-specific human induced pluripotent stem cells (hiPSCs) can be generated directly from individuals with known disease characteristics or alternatively be modified using genome editing approaches to introduce disease causing genetic mutations to study the biological response of those mutations. The genome editing procedure in hiPSCs is still inefficient, particularly when it comes to homology directed repair (HDR) of genetic mutations or targeted transgene insertion in the genome and single cell cloning of edited cells. In addition, genome editing processes also involve additional cellular stresses such as trouble with cell viability and genetic stability of hiPSCs. Therefore, efficient workflows are desired to increase genome editing application to hiPSC disease models and therapeutic applications. Apart from genome editing efficiency, hiPSC survival following single-cell cloning has proved to be challenging and has thus restricted the capability to easily isolate homogeneous clones from edited hiPSCs. To this end, we demonstrate an efficient workflow for feeder-free single cell clone generation and expansion in both CRISPR-mediated knock-out (KO) and knock-in (KI) hiPSC lines. Using StemFlex medium and CloneR supplement in conjunction with Matrigel cell culture matrix, we show that cell viability and expansion during single-cell cloning in edited and unedited cells is significantly enhanced. Our reliable single-cell cloning and expansion workflow did not affect the biology of the hiPSCs as the cells retained their growth and morphology, expression of various pluripotency markers and normal karyotype. This simplified and efficient workflow will allow for a new level of sophistication in generating hiPSC-based disease models to promote rapid advancement in basic research and also the development of novel cellular therapeutics.


2018 ◽  
Vol 28 (7) ◽  
pp. 1053-1066 ◽  
Author(s):  
Quan H. Nguyen ◽  
Samuel W. Lukowski ◽  
Han Sheng Chiu ◽  
Anne Senabouth ◽  
Timothy J.C. Bruxner ◽  
...  

2020 ◽  
Author(s):  
C. Pérez ◽  
A. Sanluis-Verdes ◽  
A. Waisman ◽  
A. Lombardi ◽  
G. Rosero ◽  
...  

ABSTRACTMicrofluidic tools have recently made possible many advances in biological and biomedical research. Research fields such as Physics, Engineering, Chemistry and Biology have combined to produce innovation in Microfluidics which has positively impacted on areas as diverse as nucleotide sequence, functional genomics, single-cell studies, single molecules assays, and biomedical diagnostics. Among these areas regenerative medicine and stem cells have benefited from Microfluidics due to these tools have had a profound impact on their applications. In the study, we present a high-performance droplet-based system for transfecting individual human-induced pluripotent stem cells. We show that this system has great efficiency in single cells and captured droplets, similar to other microfluidic methods and lower cost. We demonstrate that this microfluidic approach can be associated with the PiggyBac transposase-based system to increase its transfection efficiency. Our results provide a starting point for subsequent applications in more complex transfection systems, single-cell differentiation interactions, cell subpopulations, cell therapy, among other potential applications.


2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Camilo Pérez-Sosa ◽  
Anahí Sanluis-Verdes ◽  
Ariel Waisman ◽  
Antonella Lombardi ◽  
Gustavo Rosero ◽  
...  

Microfluidic tools have recently made possible many advances in biological and biomedical research. Research in fields such as physics, engineering, chemistry and biology have combined to produce innovation in microfluidics which has positively impacted diverse areas such as nucleotide sequencing, functional genomics, single-cell studies, single molecules assays and biomedical diagnostics. Among these areas, regenerative medicine and stem cells have benefited from microfluidics since these tools have had a profound impact on their applications. In this study, we present a high-performance droplet-based system for transfecting individual human-induced pluripotent stem cells. We will demonstrate that this system has great efficiency in single cells and captured droplets, like other microfluidic methods but with lower cost. Moreover, this microfluidic approach can be associated with the PiggyBac transposase-based system to increase its transfection efficiency. Our results provide a starting point for subsequent applications in more complex transfection systems, single-cell differentiation interactions, cell subpopulations and cell therapy, among other potential applications.


2021 ◽  
Author(s):  
Michelle Surma ◽  
Kavitha Anbarasu ◽  
Arupratan Das

CRISPR-Cas9 mediated genome editing of human pluripotent stem cells (hPSCs) provides strong avenues for human disease modeling, drug discovery and cell replacement therapy. Genome editing of hPSCs is an extremely inefficient process and requires complex gene delivery and selection methods to improve edit efficiency which are not ideal for clinical applications. Here, we have shown a selection free simple lipofectamine based transfection method where a single plasmid encoding guide RNA (gRNA) and Cas9 selectively transfected hPSCs at the colony edges. Upon dissection and sequencing, the edge cells showed more than 30% edit frequency compared to the reported 3% rate under no selections. Increased cellular health of the edge cells as revealed by reduced autophagy gene-expressions is critical for such transfection pattern. Edge specific transfection was inhibited by blocking lysosomal activity which is essential for autophagy. Hence, our method provides robust scarless genome-editing of hPSCs which is ideal for translational research.


Sign in / Sign up

Export Citation Format

Share Document