Comprehensive Analyses of Genetic Features Identify Coordinate Signatures in Diffuse Large B-Cell Lymphoma

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3922-3922
Author(s):  
Bjoern Chapuy ◽  
Andrew J Dunford ◽  
Chip Stewart ◽  
Atanas Kamburov ◽  
Jaegil Kim ◽  
...  

Abstract Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous disease characterized by multiple low-frequency alterations including somatic mutations, copy number alterations (CNAs) and chromosomal rearrangements. We sought to identify previously unrecognized low-frequency genetic events, integrate recurrent alterations into comprehensive signatures and associate these signatures with clinical parameters. For these reasons, our multi-institutional international group assembled a cohort of 304 primary DLBCLs from newly diagnosed patients, 87% of whom were uniformly treated with state-of-the-art therapy (rituximab-containing CHOP regimen) and had long term followup. Tumors were subjected to whole exome sequencing with an extended bait set that included custom probes designed to capture recurrent chromosomal rearrangements. In this cohort, 47% of samples had available transcriptional profiling and assignment to associated disease subtypes. Analytical pipelines developed at the Broad Institute were used to detect mutations (MuTect), CNAs (Recapseq+Allelic Capseq) and chromosomal rearrangements (dRanger+Breakpointer) and assess clonality (Absolute). To analyze formalin-fixed paraffin-embedded tumors without paired normals we developed a method which utilized 8334 unrelated normal samples to stringently filter recurrent germline events and artifacts. Significant mutational drivers were identified using the MutSig2CV algorithm and recurrent CNAs were assessed with GISTIC2.0. In addition, we utilized a recently developed algorithm, CLUMPS2, to prioritize somatic mutations which cluster in 3-dimensional protein structure. With this approach, we identified > 90 recurrently mutated genes, 34 focal amplifications and 41 focal deletions, 20 arm-level events and > 200 chromosomal rearrangements in the DLBCL series. Of note, 33% of the mutational drivers were also perturbed by chromosomal rearrangements or CNAs, underscoring the importance of a comprehensive genetic analysis. In the large DLBCL series, we identified several previously unrecognized but potentially targetable alterations including mutations in NOTCH2 (8%) and TET2 (5%). The majority of identified chromosomal rearrangements involved translocations of potent regulatory regions to intact gene coding sequences. The most frequently rearrangements involved Ig regulatory elements which were translocated to BCL2, MYC, BCL6 and several additional genes with known roles in germinal center B-cell biology. After identifying recurrent somatic mutations, CNAs and chromosomal rearrangements, we performed hierarchical clustering and identified subsets of DLBCLs with comprehensive signatures comprised of specific alterations. A large subset of tumors shared recurrent alterations previously associated with follicular lymphoma including mutations of chromatin modifiers such as CREBBP, MLL2, and EZH2 in association with alterations of TNFRSF14 and GNA13 and translocations of BCL2. This cluster was enriched in GCB-type DLBCLs and contained a subset with select genetic alterations associated with an unfavorable outcome. An additional cohort of tumors was characterized by alterations perturbing B-cell differentiation including recurrent BCL6 translocations or alterations of PRDM1. A subset of these DLBCLs had alterations of NOTCH2 and additional pathway components or mutations of MYD88 in association with TNFAIP3, CD70 and EBF1, a master regulator of B-cell differentiation. An additional group of DLBCLs exhibited frequent MYD88 mutations in association with alterations of CD79B, PIM1, TBL1XR1 and ETV6 and BCL2 copy gain; these tumors were highly enriched for ABC-type DLBCLs. This coordinate signature and additional alterations of p53 pathway components were associated with outcome. We explored bases for the identified genetic alterations in DLBCL by performing an in silico mutational signature analysis. The most frequent mutational signatures were those of spontaneous deamination (aging) and AID with rare cases of microsatellite instability. We also assessed the clonality of identified genetic features to define cancer cell fraction and establish the timing of specific genetic events. The comprehensive genetic signatures of clinically annotated DLBCLs provide new insights regarding approaches to targeted therapy. Disclosures Link: Kite Pharma: Research Funding; Genentech: Consultancy, Research Funding. Rodig:Perkin Elmer: Membership on an entity's Board of Directors or advisory committees; BMS: Research Funding. Pfreundschuh:Boehringer Ingelheim, Celegene, Roche, Spectrum: Other: Advisory board; Roche: Honoraria; Amgen, Roche, Spectrum: Research Funding. Shipp:Gilead: Consultancy; Sanofi: Research Funding; BMS: Membership on an entity's Board of Directors or advisory committees, Research Funding; Merck: Membership on an entity's Board of Directors or advisory committees; Bayer: Membership on an entity's Board of Directors or advisory committees, Research Funding.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 817-817
Author(s):  
Bjoern Chapuy ◽  
Honwei Cheng ◽  
Akira Watahiki ◽  
Matthew D Ducar ◽  
Daniel Gusenleitner ◽  
...  

Abstract Diffuse large B-cell lymphoma (DLBCL) is a clinically and biologically heterogeneous disease defined by different transcriptional classifications, associated signaling and survival pathways and additional recurrent genetic alterations. In the cell-of-origin (COO) scheme, DLBCLs subtypes share certain features with normal germinal center B-cells (GCB) and activated B-cells (ABC). In comparison to GCB DLBCLs, ABC tumors have increased baseline NFκB activity and more frequent genetic alterations of NFκB pathway components. DLBCLs with shared functional features are also defined by the consensus clustering classification (CCC) which delineates B-cell receptor (BCR), Oxidative Phosphorylation (OxPhos) and Host Response (HR) tumors. BCR DLBCLs have increased reliance on BCR-signaling and survival pathways and aerobic glycolysis. BCR-dependent DLBCLs with high or low baseline NFκB activity (which largely correspond to ABC or GCB tumors, respectively) have distinct SYK-PI3K-dependent survival pathways and shared sensitivity to proximal BCR pathway inhibitors. Although DLBCLs have infrequent inactivating somatic mutations of TP53, these tumors commonly have copy number alterations (CNAs) of TP53 and genes encoding cell cycle pathway components. Given the clinical and molecular heterogeneity of DLBCL, we sought to develop faithful subtype-specific model systems to assess targeted therapies. Fresh tumor biopsies from 27 primary LBCLs were implanted under the renal capsule of immune compromised NSG mice. Nine of 27 tumors were successfully expanded in vivo, serially propagated for > 5 generations and considered stable LBCL PDX models. All models were EBV- and had clonal IgH rearrangements. Morphological and immunohistochemical signatures defined 8 PDX models as DLBCL and 1 as EBV- plasmablastic lymphoma (PBL). All LBCL PDX models were subjected to RNA-Seq and classified with respect to COO and CCC subtypes. Models were also evaluated by whole exome sequencing with a modified bait set which captured coding mutations and selected chromosomal rearrangements. Six of 9 DLBCL PDX models were ABC type. These models exhibited mutations of MYD88 alone or in association with PIM1 or CD79B with other alterations, as reported in primary ABC DLBCLs. The remaining 2 DLBCL PDX models were GCB type, with characteristic alterations of GNA13 and EZH2, and chromosomal translocations involving IgH and either BCL2 or MYC. Of note, BCL2 and MYC translocations are known adverse prognostic features of primary GCB DLBCL. Certain PDX models had additional mutations including B2M, MLL2, TNFAIP3, MEF2B and TP53. Only 25% (2/8) of the DLBCL PDX models harbored inactivating TP53 mutations whereas 75% (6/8) of tumors exhibited CNAs of TP53 or its upstream modifier, CDKN2A. These data are consistent with the reported incidence and type of TP53 pathway alterations in primary DLBCLs and contrast sharply with the near-uniform presence of TP53 mutations in DLBCL cell lines. Using the CCC classification, 6/8 DLBCL PDX models (both GCBs and 4 of 6 ABCs) were defined as BCR-subtype and 2 models as non-BCR type. To assess the utility of the DLBCL PDX models for functional analysis of BCR signaling, we first assessed cell surface immunoglobulin (sIg) expression by flow cytometry. All 6 BCR-type DLBCLs expressed sIgM whereas the 2 non-BCR DLBCL models and the PBL model lacked sIg. Next, we treated viable tumor cell suspensions with a selective SYK inhibitor, entospletinib (GS-9973). SYK inhibition significantly decreased the proliferation of all 6 BCR-type DLBCLs, but had no effect on the non-BCR-type DLBCLs or the PBL PDX. Given the distinctive SYK/PI3K-dependent signaling and survival pathways in DLBCLs with low or high baseline NFκB, we also assessed selective apoptotic pathway readouts in entospletinib-treated PDX cell suspensions. SYK inhibition selectively upregulated the pro-apoptotic BH3 family member, HRK, in BCR-dependent GCB-type DLBCL PDX samples and significantly downregulated the anti-apoptotic BCL2 family member, BCL2A1, in BCR- dependent ABC-type DLBCL PDX tumors, effects consistent with those previously observed in primary DLBCL samples. In summary, we have established and molecularly characterized faithful PDX models of DLBCL and PBL and demonstrated their usefulness in evaluating novel BCR pathway inhibitors. Disclosures Rodig: Perkin Elmer: Membership on an entity's Board of Directors or advisory committees; BMS: Research Funding. Shipp:Gilead: Consultancy; Sanofi: Research Funding; Merck: Membership on an entity's Board of Directors or advisory committees; Bayer: Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 20-21
Author(s):  
Caitlin Coombes ◽  
Keisuke Horikawa ◽  
Sanjiv Jain ◽  
Jun Hee Lim ◽  
Sewa Rijal ◽  
...  

There is increasing evidence for antigen-driven B-cell receptor (BCR) signalling in diffuse large B-cell lymphoma (DLBCL) and other lymphoid malignancies. This includes antigens from infections e.g.Helicobacter pyloriand Hepatitis C virus, but it is theorised that self-antigens may play a major role in some cases of lymphoid malignancy. IgVH4-34 demonstrates intrinsic autoreactivity to self-antigens on red cells, which appears to be largely mediated by two motifs within the first framework region (FR1); Q6W7 and A24V25Y26. These motifs work together to for a hydrophobic patch which determines red cell antigen binding and are frequently mutated away from self-reactivity in normal B cells. IgVH4-34 has been reported to be over-represented in DLBCL compared with expression in normal B cells. We therefore sought to identify IgVH4-34 DLBCL cases from a local cohort and to screen them for Q6W7 and A24V25Y26 motifs expecting them to be less frequently mutated in DLBCL compared with normal B cells.We also aimed to screen V4-34 cases for associated somatic mutations in other genes using high-throughput sequencing. DLBCL patient samples were obtained via the Haematology Research Tissue Bank (HRTB) in Canberra, Australia, and the Victoria Cancer BioBank. Forty-eight Formalin-Fixed, Paraffin-Embedded (FFPE) samples and 26 fresh frozen samples were screened. All samples were collected at the time of diagnosis. Patients were treated with standard chemoimmunotherapy approaches. IgVH 4-34 gene sequences were determined using an IgVH4 family-specific leader primer in combination with a JH consensus reverse primer. The IgVH region was then sequenced using Sanger sequencing. Sequences were analyzed using the IgBLAST database (National Centre for Biotechnology Information). DNA extracted from FFPE samples generally proved to have low concentration and fragmented DNA. Only 1 IgVH4-34 sequence was obtained from FFPE tissue. Five samples sequenced from fresh tissue were identified as using IgVH4-34. Using Hans criteria, it was possible to classify 3 of the 6 cases as germinal center (GC) and 1 as non-GC origin. Using fresh samples, we estimated the frequency of IgVH4-34 cases at 23%. Within FR1, Q6W7 was unmutated in all 6 samples. One sample had mutations in the A24V25Y26 motif resulting in a change to A24V25F26. The other 5 samples (83.3%) had unmutated AVY motifs. We extracted genomic DNA from and performed next generation sequencing on the 5 samples with unmutated Q6W7 and A24V25Y26 motifs using a customized capture library (SureSelectXT Target Enrichment System, Aqilent Technologies) covering genes involved in lymphomagenesis. The purified libraries were sequenced on the Illumina NextSeq500 platform at AGRF (Australian Genome Research Facility, Australia). Several genes (FCGR3A,NOTCH2andNOTCH2NLR) had mutations in all 5 samples.FCGR3Ais an IgG Fc receptor gene, and mutations inFCGR3Ahave previously been linked to systemic lupus erythematosus (SLE).NOTCH2pathway genes are frequently mutated in DLBCL.CREBBPwas mutated in four of the five samples. Mutations inCREBBPhave previously been linked with DLBCL development and regulation of immune responses. We identified high rates of IgVH4-34 (23%) in our cohort of fresh samples as previously reported. Further, we noted preservation of the Q6W7 and A24V25Y26 motifs in IgVH4-34-expressing DLBCL. This over-representation of unmutated FR1 motifs suggests that the ability to recognise self-antigens likely provides important ongoing BCR signalling that promotes survival in DLBCL. This study also highlights the difficulties in conducting DNA-based research on FFPE clinical samples which have not been collected for research purposes and the importance of tissue banking fresh samples. Studies are currently being conducted into the efficacy of BCR pathway inhibitors e.g. ibrutinib in the treatment of DLBCL and testing for unmutated IgVH4-34 FR1 motifs may present a method to predict patients who are more likely to respond. Mutations in genes such as FCGR3A,NOTCH2andCREBBPmay work in conjunction with the preserved QW and AVY motifs to promote lymphomagenesis in IgVH4-34-expressing B cells and may present targets for future research into treatment therapies. Figure Disclosures Talaulikar: Roche:Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding;Janssen:Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau;Amgen:Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding;Takeda:Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2898-2898
Author(s):  
Vania Phuoc ◽  
Leidy Isenalumhe ◽  
Hayder Saeed ◽  
Celeste Bello ◽  
Bijal Shah ◽  
...  

Introduction: 2-[18F] fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) remains the standard of care for baseline and end of treatment scans for aggressive non-Hodgkin lymphomas (NHLs). However, the role of interim FDG-PET remains not as well defined across aggressive NHLs, especially in the era of high-intensity chemoimmunotherapy. Interim FDG-PET (iPET) can serve as an early prognostic tool, and prior studies evaluating the utility of iPET-guided treatment strategies primarily focused on diffuse large B-cell lymphomas (DLBCL) and frontline R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone). Classification criteria systems assessing response also differ between studies with no clear consensus between use of Deauville criteria (DC), International Harmonization Project (IHP), and the ΔSUVmax method. Methods: This study evaluates our institutional experience with iPET during treatment with DA-EPOCH ± R (dose-adjusted etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin with or without Rituximab) in aggressive NHLs. We retrospectively evaluated 70 patients at Moffitt Cancer Center who started on DA-EPOCH ± R between 1/1/2014 to 12/31/2018 for aggressive NHLs. Response on interim and end-of-treatment (EOT) scans were graded per DC, IHP, and ΔSUVmax methods, and progression free survival (PFS) probability estimates were calculated with chi-square testing and Kaplan Meier method. PFS outcomes were compared between interim negative and positive scans based on each scoring method. Outcomes were also compared between groups based on interim versus EOT positive or negative scans. Results: We identified 70 patients with aggressive NHLs who received DA-EPOCH ± R at our institute. The most common diagnoses were DLBCL (61%) followed by Burkitt's lymphoma (10%), primary mediastinal B-cell lymphoma (9%), plasmablastic lymphoma (7%), gray zone lymphoma (6%), primary cutaneous large B-cell lymphoma (1%), primary effusion lymphoma (1%), and other high-grade NHL not otherwise specified (3%). Of the 43 patients with DLBCL, 21/43 (49%) had double hit lymphoma (DHL) while 7/43 (16%) had triple hit lymphoma (THL), and 3/43 (7%) had MYC-rearranged DLBCL while 2/43 (5%) had double expressor DLBCL. Thirty nine out of 70 (56%) were female, and median age at diagnosis was 58.39 years (range 22.99 - 86.86 years). Most patients had stage IV disease (49/70, 70%), and 43/70 (61%) had more than one extranodal site while 45/70 (64%) had IPI score ≥ 3. Forty-six out of 70 (66%) received central nervous system prophylaxis, most with intrathecal chemotherapy (44/70, 63%). Fifty-five out of 70 (79%) had iPET available while 6/70 (9%) had interim computerized tomography (CT) scans. Fifty-six out of 70 (80%) had EOT PET, and 4/70 (6%) had EOT CT scans. Sustained complete remission occurred in 46/70 (66%) after frontline DA-EPOCH ± R (CR1), and 12/70 (17%) were primary refractory while 5/70 (7%) had relapse after CR1. Four of 70 (6%) died before cycle 3, and 3/70 (4%) did not have long-term follow-up due to transition of care elsewhere. Median follow-up was 15.29 months (range 0.85 - 60.09 months). There was significantly better PFS observed if iPET showed DC 1-3 compared to DC 4-5 (Χ2=5.707, p=0.0169), and PFS was better if iPET was negative by IHP criteria (Χ2=4.254, p=0.0392) or ΔSUVmax method (Χ2=6.411, p=0.0113). Comparing iPET to EOT PET, there was significantly better PFS if iPET was negative with EOT PET negative (iPET-/EOT-) compared to iPET positive with EOT negative (iPET+/EOT-), and iPET+/EOT+ and iPET-/EOT+ had worse PFS after iPET-/EOT- and iPET+/EOT- respectively. This pattern in iPET/EOT PFS probability remained consistent when comparing DC (Χ2=30.041, p<0.0001), IHP (Χ2=49.078, p<0.0001), and ΔSUVmax method (Χ2=9.126, p=0.0104). These findings fit clinical expectations with positive EOT scans indicating primary refractory disease. There was no significant difference in PFS when comparing DLBCL versus non-DLBCL (Χ2=3.461, p=0.0628) or DHL/THL versus non-DHL/THL diagnoses (Χ2=2.850, p=0.0914). Conclusion: Our findings indicate a prognostic role of iPET during treatment with DA-EPOCH ± R for aggressive NHLs. Significant differences in PFS were seen when graded by DC, IHP, and ΔSUVmax methods used in prior studies and when comparing interim versus EOT response. Larger studies are needed to confirm these findings. Disclosures Bello: Celgene: Speakers Bureau. Shah:Novartis: Honoraria; AstraZeneca: Honoraria; Spectrum/Astrotech: Honoraria; Adaptive Biotechnologies: Honoraria; Pharmacyclics: Honoraria; Jazz Pharmaceuticals: Research Funding; Incyte: Research Funding; Kite/Gilead: Honoraria; Celgene/Juno: Honoraria. Sokol:EUSA: Consultancy. Chavez:Janssen Pharmaceuticals, Inc.: Speakers Bureau; Genentech: Speakers Bureau; Kite Pharmaceuticals, Inc.: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1527-1527
Author(s):  
Sara Rodríguez ◽  
Cirino Botta ◽  
Jon Celay ◽  
Ibai Goicoechea ◽  
Maria J Garcia-Barchino ◽  
...  

Background: Although MYD88 L265P is highly frequent in WM, by itself is insufficient to explain disease progression since most cases with IgM MGUS also have mutated MYD88. In fact, the percentage of MYD88 L265P in CD19+ cells isolated from WM patients is typically &lt;100%, which questions if this mutation initiates the formation of B-cell clones. Furthermore, a few WM patients have detectable MYD88 L265P in total bone marrow (BM) cells and not in CD19+ selected B cells, raising the possibility that other hematopoietic cells carry the MYD88 mutation. However, no one has investigated if the pathogenesis of WM is related to somatic mutations occurring at the hematopoietic stem cell level, similarly to what has been shown in CLL or hairy cell leukemia. Aim: Define the cellular origin of WM by comparing the genetic landscape of WM cells to that of CD34 progenitors, B cell precursors and residual normal B cells. Methods: We used multidimensional FACSorting to isolate a total of 43 cell subsets from BM aspirates of 8 WM patients: CD34+ progenitors, B cell precursors, residual normal B cells (if detectable), WM B cells, plasma cells (PCs) and T cells (germline control). Whole-exome sequencing (WES, mean depth 74x) was performed with the 10XGenomics Exome Solution for low DNA-input due to very low numbers of some cell types. We also performed single-cell RNA and B-cell receptor sequencing (scRNA/BCRseq) in total BM B cells and PCs (n=32,720) from 3 IgM MGUS and 2 WM patients. Accordingly, the clonotypic BCR detected in WM cells was unbiasedly investigated in all B cell maturation stages defined according to their molecular phenotype. In parallel, MYD88p.L252P (orthologous position of the human L265P mutation) transgenic mice were crossed with conditional Sca1Cre, Mb1Cre, and Cγ1Cre mice to selectively induce in vivo expression of MYD88 mutation in CD34 progenitors, B cell precursors and germinal center B cells, respectively. Upon immunization, mice from each cohort were necropsied at 5, 10 and 15 months of age and screened for the presence of hematological disease. Results: All 8 WM patients showed MYD88 L265P and 3 had mutated CXCR4. Notably, we found MYD88 L265P in B cell precursors from 1/8 cases and in residual normal B cells from 3/8 patients, which were confirmed by ASO-PCR. In addition, CXCR4 was simultaneously mutated in B cell precursors and WM B cells from one patient. Overall, CD34+ progenitors, B-cell precursors and residual normal B cells shared a median of 1 (range, 0-4; mean VAF, 0.16), 2 (range, 1-5; mean VAF, 0.14), and 4 (range, 1-13; mean VAF, 0.26) non-synonymous mutations with WM B cells. Some mutations were found all the way from CD34+ progenitors to WM B cells and PCs. Interestingly, concordance between the mutational landscape of WM B cells and PCs was &lt;100% (median of 85%, range: 25%-100%), suggesting that not all WB B cells differentiate into PCs. A median of 7 (range, 2-19; mean VAF, 0.39) mutations were unique to WM B cells. Accordingly, many clonal mutations in WM B cells were undetectable in normal cells. Thus, the few somatic mutations observed in patients' lymphopoiesis could not result from contamination during FACSorting since in such cases, all clonal mutations would be detectable in normal cells. Of note, while somatic mutations were systematically detected in normal cells from all patients, no copy number alterations (CNA) present in WM cells were detectable in normal cells. scRNA/BCRseq unveiled that clonotypic cells were confined mostly within mature B cell and PC clusters in IgM MGUS, whereas a fraction of clonotypic cells from WM patients showed a transcriptional profile overlapping with that of B cell precursors. In mice, induced expression of mutated MYD88 led to a moderate increase in the number of B220+CD138+ plasmablasts and B220-CD138+ PCs in lymphoid tissues and BM, but no signs of clonality or hematological disease. Interestingly, such increment was more evident in mice with activation of mutated MYD88 in CD34+ progenitors and B-cell precursors vs mice with MYD88 L252P induced in germinal center B cells. Conclusions: We show for the first time that WM patients have somatic mutations, including MYD88 L265P and in CXCR4, at the B cell progenitor level. Taken together, this study suggests that in some patients, WM could develop from B cell clones carrying MYD88 L265P rather than it being the initiating event, and that other mutations or CNA are required for the expansion of B cells and PCs with the WM phenotype. Disclosures Roccaro: Janssen: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Transcan2-ERANET: Research Funding; AstraZeneca: Research Funding; European Hematology Association: Research Funding; Transcan2-ERANET: Research Funding; Associazione Italiana per al Ricerca sul Cancro (AIRC): Research Funding; Associazione Italiana per al Ricerca sul Cancro (AIRC): Research Funding; European Hematology Association: Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees; AstraZeneca: Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees. San-Miguel:Amgen, Bristol-Myers Squibb, Celgene, Janssen, MSD, Novartis, Roche, Sanofi, and Takeda: Consultancy, Honoraria. Paiva:Amgen, Bristol-Myers Squibb, Celgene, Janssen, Merck, Novartis, Roche, and Sanofi; unrestricted grants from Celgene, EngMab, Sanofi, and Takeda; and consultancy for Celgene, Janssen, and Sanofi: Consultancy, Honoraria, Research Funding, Speakers Bureau.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4395-4395 ◽  
Author(s):  
Bertrand Coiffier ◽  
Catherine Thieblemont ◽  
Sophie de Guibert ◽  
Jehan Dupuis ◽  
Vincent Ribrag ◽  
...  

Abstract Background SAR3419 is a humanized anti-CD19 antibody conjugated to maytansin DM4, a potent cytotoxic agent. SAR3419 targets CD19, an antigen expressed in the majority of B cell non-Hodgkin lymphomas (NHL). The recommended dose for single agent SAR3419 was previously determined to be 55 mg/m2 administered IV every week for 4 weeks, then bi-weekly. In phase I, clinical activity was shown mainly in patients with follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL). (Trial funded by Sanofi). Methods Patients (pts) with a CD20+ and CD19+ DLBCL relapsing or refractory (R/R) after at least 1 standard treatment including rituximab and not candidate for or who already underwent transplantation, were eligible. Refractory disease was defined as unresponsive to or progressing within 6 months of regimen completion. Fresh (or recent formalin-fixed, paraffin-embedded) biopsy was required before SAR3419 start. Pts received 375 mg/m2 of rituximab (R) IV and 55 mg/m² of SAR3419 on day 1, 8, 15, 22 (35-day cycle 1), followed by bi-weekly R and SAR3419 at the same doses for 2 additional 28-day cycles, provided there was no disease progression or other study discontinuation criteria met. The primary objective was the overall response rate (ORR) following Cheson 2007 criteria, with the first tumor assessment being done 42 days after the last study treatment administration. Secondary objectives were: safety, pharmacokinetics (PK), duration of response (DOR), progression free survival (PFS), overall survival (OS) and correlation of the antitumor and biological activity of the combination with tumor biomarker status. Results Fifty-three pts were enrolled, 52 treated. Median age was 66.5 years (range 38-85), 50% were male; 23%, 33% and 40% of patients had received 1, 2 or ≥3 prior chemo/immunotherapy regimens for DLBCL, respectively. Of the enrolled patients, 3.8% had received no prior regimen for DLBCL and therefore were excluded from primary analysis for efficacy. Seventy-three percent had stage III/IV disease, 59% had elevated lactate dehydrogenase (LDH), and 63% had bulky disease. Sixty percent were refractory to first regimen (primary refractory), 16% were refractory to last regimen and 24% were relapsed pts. The ORR in the per-protocol population (n=45) was 31.1% (80% confidence interval (CI): 22.0% to 41.6%). Among the 14 responders, 5 had progressed at the time of analysis, with duration of response beyond 6 months for 3 of them. The ORR was 58.3% (80% CI: 36.2% to 78.1%) for patients with relapsed DLBCL (n=12), 42.9% (80% CI: 17.0% to 72.1%) for pts refractory to last regimen (n=7) and 15.4% (80% CI: 6.9% to 28.4%) for primary refractory pts (n=26). Overall survival and PFS data are not yet mature. Biomarkers and PK data will be presented at the meeting. The most common (≥10%) all grades non-hematologic treatment-emergent adverse events (TEAEs) were asthenia (25.0%), nausea (21.2%), cough (19.2%), diarrhea (17.3%), weight decrease (17.3%), vomiting (15.4%), dyspnea (15.4%), abdominal pain (13.5%), back pain (13.5%), pyrexia (13.5%) and constipation (11.5%). Related grade 3-4 TEAEs were: 1 syncope, 1 bronchospasm, 2 neutropenia and 1 anemia. No TEAEs led to treatment discontinuation, no grade 3-4 peripheral neuropathy or grade 3-4 ocular events were observed. Two pts experienced grade 2 keratitis, both rapidly recovered with local treatment. Hematological toxicity was moderate, with grade 3-4 neutropenia and thrombocytopenia in 15.7% and 9.8% pts, respectively. No complications related to neutropenia were reported. Grade 3 transaminase increase was observed in 1 patient. Conclusions The combination of SAR3419 plus R showed moderate ORR in R/R DLBCL; however the study population was of poor prognosis (60% refractory to first line therapy). In the relapsed DLBCL patients a higher ORR was observed. SAR3419 plus R presented with a favorable safety profile. Further investigations on biomarker expression are ongoing to identify a sub-group of pts who could have better benefited from this combination. Disclosures: Coiffier: Sanofi: Membership on an entity’s Board of Directors or advisory committees. Off Label Use: Phase II of SAR3419. Ribrag:Johnson & Johnson: Honoraria, Membership on an entity’s Board of Directors or advisory committees; Sanofi: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Bayer: Research Funding; Takeda: Membership on an entity’s Board of Directors or advisory committees; Servier: Membership on an entity’s Board of Directors or advisory committees, Research Funding. Cartron:LFB: Honoraria; GSK: Honoraria; Roche: Consultancy, Honoraria, Speakers Bureau. Casasnovas:Roche: Consultancy, Honoraria, Research Funding. Hatteville:Sanofi: Employment. Zilocchi:Sanofi: Employment. Oprea:Sanofi: Employment. Tilly:Amgen: Research Funding; Janssen: Honoraria; Pfizer: Honoraria; Takeda: Membership on an entity’s Board of Directors or advisory committees; Roche: Honoraria; Celgene: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1518-1518 ◽  
Author(s):  
Jackie Vandermeer ◽  
Allison M Winter ◽  
Ajay K. Gopal ◽  
Ryan D. Cassaday ◽  
Brian T. Hill ◽  
...  

Abstract Introduction Among patients with aggressive B-NHL who fail RCHOP, about half respond to standard salvage regimens and may proceed to curative-intent, transplant-based therapy. However, whether pts failing more intensive regimens such as dose-adjusted, infusional EPOCH benefit from standard salvage regimens is unclear. We hypothesized that such patients comprise a higher-risk cohort, facing inferior response rates and outcomes using standard salvage regimens. We undertook a collaborative study to assess response rates and survival among pts failing EPOCH for aggressive B-NHL, to inform patient management and design of clinical trials in this setting. Methods Pharmacy records and institutional databases were queried, identifying pts receiving EPOCH over the last 10 years at the University of Washington/SCCA and the Cleveland Clinic Foundation, for combined analysis. Under IRB approval, patient characteristics, histology, outcome with EPOCH, time to EPOCH failure, response to salvage, and overall survival were analyzed. Diffuse large B cell lymphoma (DLBCL), primary mediastinal B-cell lymphoma, B-cell-lymphoma unclassifiable, HIV-associated B cell lymphoma, and transformed B cell non-Hodgkin lymphoma were included. Pts receiving <2 cycles EPOCH, or who had inadequate follow-up (<3 months), were excluded. Failure of EPOCH was defined as failure to respond or progression during therapy, need for initiation of salvage therapy, or death during therapy of any cause. Adverse events or treatment change due to toxicity were not included in the definition of failure. JMP 11 was used to generate kaplan-meier survival estimates. Results 124 pts with aggressive B-NHL receiving EPOCH were identified. 54 had not relapsed, and among 70 remaining da-EPOCH failures, 37 met the above inclusion criteria. Median age was 55. 27% were female, and 23 received EPOCH as first-line therapy. All but 3 received rituximab with EPOCH. Histologies were primarily DLBCL in 22/37 (60%) and BCL-U in 12/37 (32%) carrying a MYC translocation; most of these harbored additional translocations in BCL2 and/or BCL6 (10/12). However, data regarding MYC rearrangement was not available for all pts. 2 had HIV-associated B-NHL and 3 had PMBCL. With 18 months follow up, the median time to EPOCH failure was 5 months. Only 3 EPOCH failures occurred late (>12 months). Median OS from the date of EPOCH failure was 10 months (Figure 1). Those receiving EPOCH as first-line therapy (23) had a median OS of 14 months from EPOCH failure, as opposed to 4 months for those receiving EPOCH as salvage therapy (log-rank p=.01). Salvage chemotherapy regimens after EPOCH were diverse, and generally ineffective; 6/28 (21%) regimens produced a response (Table 1). Among patients failing EPOCH within a year, platinum-containing salvage (RICE/RDHAP) was effective in only 2/13 patients (15%). 9 patients did not receive any salvage, most of whom died or proceeded to palliative measures and/or hospice care. Conclusions A relatively low overall response rate (21%) was observed in this retrospective analysis of patients failing EPOCH. Analogous to early RCHOP failure in the CORAL study, those failing EPOCH within a year may face inferior outcomes with platinum-based salvage therapy. While combined from two institutions, our data represent a modest sample size and require confirmation. If verified, examination of mechanisms of resistance to EPOCH, and selecting EPOCH failures for clinical trials of novel targeted therapies and transplant-based approaches, may prove critical. Table 1. Salvage Therapy for REPOCH failures Regimen: response/total number treated Notes Response to any salvage: 6/28 (21%) Some patients received more than 1 chemo salvage; responses were tabulated per regimen. RICE: 4/12 2/3 alive post transplant(1 auto 1 allo; 1 declined transplant and survived; 1 died) RDHAP: 1/6 Gemcitabine-based: 0/5 HyperCVAD (Part A and/or B): 1/5 Survivor had CNS only relapse, received regimen B and transplant 9- received no systemic treatmen; most died or proceeded to palliative measures and/or hospice Figure 1. Figure 1. Disclosures Gopal: Gilead: Consultancy, Research Funding; Pfizer: Consultancy, Research Funding; Spectrum: Consultancy, Research Funding; Emergent/Abbott: Research Funding; Sanofi-Aventis: Honoraria; Seattle Genetics: Consultancy, Honoraria; BioMarin: Research Funding; Piramal: Research Funding; Janssen: Consultancy; Millenium: Honoraria, Research Funding; BMS: Research Funding; Merck: Research Funding. Hill:Seattle Genetics: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees; Pfizer: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees. Till:Roche/Genentech: Research Funding; Pfizer: Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 5112-5112
Author(s):  
Paul A Hamlin ◽  
Catherine S. Diefenbach ◽  
David J. Valacer ◽  
Jack Higgins ◽  
Michelle A. Fanale

Abstract Background CD20 is selectively expressed on the surface of early pre-B-cells, remains throughout B-cell development, and is then lost from plasma cells. Because CD20 is present on the majority of B-cell lymphomas, anti-CD20 monoclonal antibody (MAb) therapy is widely employed in the treatment of NHL. However a majority of NHL patients eventually become refractory to CD20 MAb(s). Resistance mechanisms may include increased MAb catabolism, initial or post treatment selection of low CD20 expressing tumor cells, trogocytosis of surface CD20, failure of MAb effector mechanisms and/or impaired patient immune cell function. MT-3724 is a recombinant fusion protein consisting of a CD20 binding variable fragment (scFv) fused to the enzymatically active Shiga-like toxin-I A1 subunit (SLT-I A1). SLT-I A1 is an N-glycosidase that catalytically inactivates 60S ribosomal subunits causing inhibition of protein synthesis. Upon its scFv binding to cell surface CD20 in vitro, SLT-I A1 forces MT-3724 internalization which then routes in a predictable fashion to the cytosol and irreversibly inactivates the cell ribosomes triggering cell death. MT-3724 has been shown to specifically bind and kill CD20+ malignant human B-cells in vitro and non-human primate (NHP) B-cells in vivo. MT-3724 was tested for safety in healthy NHPs: 6 intravenous (IV) doses of MT-3724 were given over 12 days at doses of 50, 150, and 450 mcg/kg. There were no deaths or effects on serum chemistries in the NHP studies. The major observed toxicity (inappetence) resolved within 48 hours of last dose. There was a significant, dose-dependent NHP B-cell depletion by Day 3 at all doses. Given the preclinical activity and mechanism of action, a Phase I/Ib study of MT-3724 was initiated in NHL. Methods MT-3724 is being tested for safety and tolerability in a first-in-human, open label, ascending dose study (3 + 3 design) in sequential cohorts of 5, 10, 20 and 50 mcg/kg/dose. Eligible subjects who previously responded to a CD20 MAb containing therapy followed by relapse/recurrence of NHL receive 6 doses by 2 hour IV infusions over the first 12 days of a 28 day cycle (first cycle). With continued safety, tolerability and lack of tumor progression, subjects may receive up to 4 additional 6-dose cycles (21 days) with tumor assessments after cycles 2, 4 and 5. Dose escalation is based on < 33% dose limiting toxicities (DLTs) observed during the first 28 day cycle. Results Three NHL subjects (2 transformed DLBCL, 1 FL) have completed at least one cycle in the 5 mcg/kg/dose cohort with no protocol DLTs or infusion related reactions and are evaluable for safety. Non-DLTs included grade (Gr) 2-3 transient hyperglycemic episodes related to pre-infusion corticosteroid therapy (n=1); transient Gr 4 neutropenia, possibly related to MT-3724 during cycle 1, week 4 (n=1); Gr 4 hypercalcemia and acute kidney injury with Gr 3 hypophosphatemia during cycle 1, week 4 due to leukemic disease progression (n=1). Subject 1 completed 5 cycles of therapy, with a partial response achieved post cycle 2 sustained through cycle 5; Subject 3 had a mixed response (both subjects had transformed DLBCL). Three subjects have now initiated treatment in the 10 mcg/kg/dose cohort with updated data to be presented at the meeting. Conclusions MT-3724 at 5 mcg/kg/dose has been safely administered for up to 5 cycles in this first-in-human study in relapsed/refractory NHL subjects. Treatment with the 10 mcg/kg cohort has commenced with continuing dose ascension planned. There is early evidence of clinical activity. Disclosures Diefenbach: Gilead: Equity Ownership, Research Funding, Speakers Bureau; Jannsen Oncology: Consultancy; Idera: Consultancy; Immunogen: Consultancy; Incyte: Research Funding; Genentech: Research Funding; Celgene: Consultancy; Molecular Templates: Research Funding; Seattle Genetics: Consultancy, Honoraria, Research Funding. Valacer:Molecular Templates: Employment. Higgins:Molecular Templates: Employment. Fanale:Merck: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Research Funding; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Honoraria, Research Funding; Infinity: Membership on an entity's Board of Directors or advisory committees; Spectrum: Membership on an entity's Board of Directors or advisory committees; Seattle Genetics: Honoraria, Research Funding; Genentech: Research Funding; Medimmune: Research Funding; Novartis: Research Funding; Bayer: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees; Molecular Templates: Research Funding; ADC Therapeutics: Research Funding; Onyx: Research Funding; Gilead: Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 623-623
Author(s):  
Bradley M. Haverkos ◽  
Onder Alpdogan ◽  
Robert Baiocchi ◽  
Jonathan E Brammer ◽  
Tatyana A. Feldman ◽  
...  

Abstract Introduction: EBV can be associated with several types of lymphomas, with reported frequencies of up to 8-10% in diffuse large B cell lymphoma (DLBCL), 30-100% in peripheral T cell lymphoma (PTCL) subtypes, 80% in post-transplant lymphoproliferative disease (PTLD), and 15-30% in classical Hodgkin lymphoma (HL), with adverse impact on outcomes. Nanatinostat (Nstat) is a Class-I selective oral HDAC inhibitor that induces the expression of the lytic BGLF4 EBV protein kinase in EBV + tumor cells, activating ganciclovir (GCV) via phosphorylation. This results in GCV-induced inhibition of viral and cellular DNA synthesis and apoptosis. Herein we report the final results from this exploratory study for patients with R/R EBV + lymphomas (NCT03397706). Methods: Patients aged ≥18 with histologically confirmed EBV + lymphomas (defined as any degree of EBER-ISH positivity), R/R to ≥1 prior systemic therapies with an absolute neutrophil count ≥1.0×10 9/L, platelet count ≥50×10 9/L, and no curative treatment options per investigator were enrolled into 5 dose escalation cohorts to determine the recommended phase 2 doses (RP2D) of Nstat + VGCV for phase 2 expansion. Phase 2 patients received the RP2D (Nstat 20 mg daily, 4 days per week + VGCV 900 mg orally daily) in 28-day cycles until disease progression or withdrawal. Primary endpoints were safety/RP2D (phase 1b) and overall response rate (ORR) (phase 2); secondary endpoints were pharmacokinetics, duration of response (DoR), time to response, progression free survival and overall survival. Responses were assessed using Lugano 2014 response criteria beginning at week 8. Results: As of 18 June 2021, 55 patients were enrolled (phase 1b: 25; phase 2: 30). Lymphoma subtypes were DLBCL (n=7), extranodal NK/T-cell (ENKTL) (n=9), PTCL, not otherwise specified (PTCL-NOS) (n=5), angioimmunoblastic T cell lymphoma (n=6), cutaneous T cell (n=1), HL (n=11), other B cell (n=3), and immunodeficiency-associated lymphoproliferative disorders (IA-LPD) (n=13), including PTLD (n=4), HIV-associated (n=5), and other [n=4: systemic lupus erythematosus (SLE) (n=2), common variable/primary immunodeficiency (n=2)]. Median age was 60 years (range 19-84), M/F 35/20, median number of prior therapies was 2 (range 1-11), 76% had ≥2 prior therapies, 78% were refractory to their most recent prior therapy, and 84% had exhausted standard therapies. EBER positivity ranged from &lt;1 to 90% in 42 tumor biopsies with central lab review. The most common treatment-emergent adverse events (TEAEs) of all grades were nausea (38%), neutropenia (34%), thrombocytopenia (34%), and constipation (31%). Grade 3/4 TEAEs in &gt;10% of patients included neutropenia (27%), thrombocytopenia (20%), anemia (20%), and lymphopenia (14%). Dose reductions and interruptions due to treatment-related AEs were reported in 14 (25%) and 16 (29%) patients, respectively. Only 1 patient had to discontinue therapy. There were no cases of CMV reactivation. For 43 evaluable patients (EBER-ISH + with ≥ 1 post-treatment response assessment) across all histologies, the investigator-assessed ORR and complete response (CR) rates were 40% (17/43) and 19% (8/43) respectively. Patients with T/NK-NHL (n=15; all refractory to their last therapy) had an ORR of 60% (n=9) with 27% (n=4) CRs. Two patients (ENKTL and PTCL-NOS) in PR and CR respectively were withdrawn at 6.7 and 6.6 months (m) respectively for autologous stem cell transplantation. For DLBCL (n=6), ORR/CR was 67%/33% (both CRs were in patients refractory to first-line R-CHOP). For IA-LPD (n=13), ORR/CR was 30%/20% (PTLD: 1 CR, other: 1 CR, 1 PR). For HL (n=10), there was 1 PR (4 SD). The median DoR for all responders was 10.4 m, with a median follow-up from response of 5.7 m (range 1.9-34.1 m). For the 17 responders, 8 lasted ≥ 6 months. Conclusions: The combination of Nstat and VGCV was well-tolerated with a manageable toxicity profile and shows promising efficacy in patients with R/R EBV + lymphomas, particularly in refractory T/NK-NHL, a heterogeneous group of aggressive lymphomas with dismal outcomes, with multiple durable responses. Further evaluation of this novel combination therapy for the treatment of recurrent EBV + lymphomas is ongoing in the phase 2 VT3996-202 trial. Disclosures Haverkos: Viracta Therapeutics, Inc.: Honoraria, Research Funding. Baiocchi: Prelude Therapeutics: Consultancy; viracta: Consultancy, Current holder of stock options in a privately-held company; Codiak Biosciences: Research Funding; Atara Biotherapeutics: Consultancy. Brammer: Seattle Genetics: Speakers Bureau; Celgene: Research Funding; Kymera Therapeutics: Consultancy. Feldman: Alexion, AstraZeneca Rare Disease: Honoraria, Other: Study investigator. Brem: Karyopharm: Membership on an entity's Board of Directors or advisory committees; SeaGen: Speakers Bureau; BeiGene: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Bayer: Membership on an entity's Board of Directors or advisory committees; KiTE Pharma: Membership on an entity's Board of Directors or advisory committees; TG Therapeutics: Consultancy; ADC Therapeutics: Membership on an entity's Board of Directors or advisory committees; Pharmacyclics/Janssen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Morphosys/Incyte: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Scheinberg: Roche: Consultancy; Abbvie: Consultancy; BioCryst Pharmaceuticals: Consultancy; Alexion pharmaceuticals: Consultancy, Honoraria, Speakers Bureau; Novartis: Consultancy, Honoraria, Speakers Bureau. Joffe: AstraZeneca: Consultancy; Epizyme: Consultancy. Katkov: Viracta Therapeutics, Inc.: Current Employment. McRae: Viracta Therapeutics, Inc.: Current Employment. Royston: Viracta Therapeutics, Inc.: Current Employment. Rojkjaer: Viracta Therapeutics, Inc.: Current Employment. Porcu: Viracta: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Innate Pharma: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BeiGene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Incyte: Research Funding; Daiichi: Honoraria, Research Funding; Kiowa: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Spectrum: Consultancy; DrenBio: Consultancy.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 96-96 ◽  
Author(s):  
Dahlia Sano ◽  
Loretta J. Nastoupil ◽  
Nathan H. Fowler ◽  
Luis Fayad ◽  
F. B. Hagemeister ◽  
...  

Abstract Background Axicabtagene ciloleucel (axi-cel) is an autologous CD19-specific CAR T-cell therapy product that was FDA approved for the treatment of adult patients with relapsed or refractory large B-cell lymphoma after at least two lines of systemic therapy. In the pivotal ZUMA-1 study, the best overall response (ORR) and complete response (CR) rates observed in 108 patients treated with axi-cel were 82% and 58%, respectively. At a median follow-up of 15.4 months, 42% of the patients remain in ongoing response (Neelapu et al. N Eng J Med 2017). Analysis of efficacy outcomes in patients <65 years (N=81) and ³65 years (N=27) showed that the ORR and ongoing response at 12 months were comparable between the two subgroups (Neelapu et al. N Eng J Med 2017). Whether the safety is also comparable between the two subgroups is unknown. Here, we report safety outcomes in elderly patients (³65 years) with large B-cell lymphoma treated with axi-cel at our institution. Methods We retrospectively analyzed and reviewed the data from patients treated with axi-cel at our institution. Patients had a diagnosis of relapsed or refractory diffuse large B-cell lymphoma (DLBCL), primary mediastinal B-cell lymphoma (PMBCL), high-grade B-cell lymphoma (HGBCL), and transformed follicular lymphoma (TFL). Patients were treated with conditioning chemotherapy with cyclophosphamide and fludarabine for 3 days followed by axi-cel infusion after 2 days of rest at a dose of 2 x 106 CAR+ T cells/kg body weight. Patients were monitored for toxicities for at least 7 days in the hospital after CAR T infusion and those who had at least 30 days of follow-up after axi-cel were considered to be evaluable for safety. Cytokine release syndrome (CRS) and neurological toxicity termed as CAR-related encephalopathy syndrome (CRES) were graded according to the CARTOX grading system (Neelapu et al. Nat Rev Clin Oncol 2018). Results A total of 61 patients with relapsed or refractory large B-cell lymphoma who received axi-cel at our institution were included. Of these, 44 (72%) patients were <65 years of age and 17 (28%) patients were ³65 years of age. The baseline characteristics of the patients are summarized in Table 1. ORR and CR rates at Day 30 were comparable between the two groups. CRS was common in both groups and was observed in 83% and 91% of the patients in the older and younger age groups, respectively. But most CRS events were grade 1-2. Grade 3 or higher CRS was observed in 18% vs. 11% in the older vs. younger age groups (P=0.67). One patient with a history of autoimmune disease in the elderly group died of hemophagocytic lymphohistiocytosis (HLH). CRES was observed in 58% and 71% of the patients in the older and younger age groups, respectively. Grade 3 or higher CRES was observed in 29% vs. 39% in the older vs. younger age groups (P=0.58). Median hospitalization period for axi-cel CAR T-cell therapy was comparable between the two groups. Conclusions Our results suggest that response rates are comparable between the elderly and younger age groups at day 30 after axi-cel therapy. Importantly, toxicities due to CRS and/or CRES after axi-cel CD19 CAR T cell therapy are comparable between the elderly (³65 years) and younger (<65 years) patients with relapsed or refractory large B-cell lymphoma. Table 1 Table 1. Disclosures Nastoupil: Merck: Honoraria, Research Funding; Janssen: Research Funding; Juno: Honoraria; Novartis: Honoraria; Genentech: Honoraria, Research Funding; TG Therappeutics: Research Funding; Karus: Research Funding; Celgene: Honoraria, Research Funding; Spectrum: Honoraria; Gilead: Honoraria. Fowler:Pharmacyclics: Consultancy, Research Funding; Janssen: Consultancy, Research Funding. Samaniego:ADC Therapeutics: Research Funding. Wang:Kite Pharma: Research Funding; Acerta Pharma: Honoraria, Research Funding; Novartis: Research Funding; Juno: Research Funding; Pharmacyclics: Honoraria, Research Funding; Dava Oncology: Honoraria; AstraZeneca: Consultancy, Research Funding; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; MoreHealth: Consultancy; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Westin:Kite Pharma: Membership on an entity's Board of Directors or advisory committees; Apotex: Membership on an entity's Board of Directors or advisory committees; Novartis Pharmaceuticals Corporation: Membership on an entity's Board of Directors or advisory committees; Celgen: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3885-3885
Author(s):  
Justyna Anna Wierzbinska ◽  
Reka Toth ◽  
Naveed Ishaque ◽  
Jan-Phillip Mallm ◽  
Karsten Rippe ◽  
...  

Abstract Normal B cells undergo extensive epigenetic programming during normal differentiation and distinct B cell differentiation stages represent unique DNA methylation patterns. Chronic Lymphocytic Leukemia (CLL) originates from rapidly differentiating B cells and their DNA methylation signature is stably propagated in CLL. Consequently, CLL methylome data can be used to infer the putative cell-of-origin (COO) for each individual CLL case. We define the COO of CLL as the cell that has acquired a first oncogenic hit and which will initiate tumorigenic growth if one or more additional hits have been acquired. This means that two factors contribute to the epigenetic profile of CLL cells: first, the epigenetic profile of the founder B cell at the time of malignant transformation and second, CLL-specific epigenetic alterations that are acquired during leukemogenesis and progression of the disease. Previous studies using peripheral blood CD19+ B cells as a reference for aberrant methylation calls completely neglected the massive epigenetic programming that occurs during normal B cell differentiation. Thus, novel strategies aiming at identifying truly CLL-specific methylation changes considering the highly dynamic methylome during normal B cell differentiation were urgently needed. Here we outline a new analytical framework to delineate CLL-specific DNA methylation. We demonstrate how this approach can be applied to detect epigenetically deregulated transcripts in CLL. Firstly, we modeled the epigenome dynamics occurring during normal B cell differentiation using linear regression. The DNA methylomes of CLL cells were then precisely positioned onto the normal B cell differentiation trajectory to define the closest normal B cell methylome for every CLL patient, the COO. The epigenome of the COO then served as a reference for aberrant DNA methylation calls. We dissected two categories of CLL-specific methylation events: those occurring at sites undergoing epigenetic programming during B cell differentiation and those that normally do not change during B cell differentiation. The first group was further subdivided into class A and B, displaying exaggerated methylation loss or gain, respectively, and class C showing both hyper- and hypomethylation relative to the normal differentiation. The second group was classified into class D displaying hypo- and class E showing hypermethylation. Overall, only 1.6% of the CpG-sites (7,248 CpGs) represented on the Illumina 450k array were affected by disease-specific methylation programming, mostly hypomethylation (6,680 CpGs). Next, the molecular programs underlying the CLL-specific methylation patterns were investigated. We tested enrichment of chromatin states and of transcription factor binding sites (TFBS) as identified in an immortalized B cell line (GM12878). This indicated that disease-specific methylation events target transcriptionally relevant cis-regulatory elements in CLL (enhancers, weak and poised promoters and insulator regions). In line with this, CLL-specific differentially methylated regions affected TFBS associated with signaling pathways known to be important in normal B-cell differentiation (i.e. BATF, EBF1). We also observed altered methylation at CTCF binding sites suggesting their involvement in CLL pathogenesis. In the present work, we dissected CLL methylomes to distinguish between normal B cell differentiation-associated methylation patterns and CLL-specific methylation events. We showed that this approach is indispensable to identify key pathogenic events driving CLL pathogenesis. The relevance of our approach was demonstrated by contrasting the number of epigenetically deregulated miRNAs and protein-coding genes to those determined with a classic analysis using CD19+ B cells as controls. This highlights the extent of overcalling of CLL-specific methylation patterns in previous studies (~30-fold for protein-coding genes and ~10-fold for miRNAs) and stresses the importance to consider normal differentiation trajectories for the identification of aberrant DNA methylation events. Here we propose 11 protein-coding genes (e.g. DOK2, CLLU1) and 4 miRNAs (e.g. miR-486, miR-195) as being epigenetically deregulated in CLL. Our analytical approach provides a general framework for the identification of disease-specific epigenomic changes that should be applicable to other cancers in the future. Disclosures Küppers: the Takeda Advisory Board: Membership on an entity's Board of Directors or advisory committees. Stilgenbauer:AbbVie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Genentech: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Genzyme: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Boehringer-Ingelheim: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Gilead: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pharmcyclics: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Mundipharma: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; GSK: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Hoffmann La-Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Sanofi: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document