In Vivo Efficacy of Bcl11a Erythroid-Enhancer Deletion in Humanized Mouse Models of Anemia

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2465-2465 ◽  
Author(s):  
Thomas M Ryan ◽  
Suean Daimia Fontenard ◽  
Shanrun Liu ◽  
Jonathan Lockhart ◽  
Michael Berlett

Abstract Autologous cell therapy holds great promise for the treatment of beta thalassemia major and hemoglobinopathies like sickle cell anemia. Gene editing of a patient's own stem cells to reactivate the silenced gamma globin gene is one approach under active development. Prior to directly testing these new therapies in patients, we can answer some basic questions about their in vivo efficiency and efficacy in humanized mouse models of anemia. These models have their endogenous adult alpha and beta globin genes replaced with human alpha, gamma, and beta globin genes. These mice synthesize high level of human fetal hemoglobin during fetal life and complete their fetal-to-adult hemoglobin switch after birth. Experimental strategies designed to reactivate the silenced fetal gamma globin genes in adult erythroid cells are easily tested in vivo in these humanized hemoglobin switching mouse models. The silenced human fetal gamma globin genes can be activated by mutating the erythroid-specific enhancer of Bcl11a by gene editing. CRISPR sgRNAs, designed to target the +62 kb DNase I hypersensitive site in the second intron of Bcl11a, were microinjected along with Cas9 mRNA, into fertilized mouse embryos collected from humanized hemoglobin (Hb A) mice. The indel mutations that were generated in the founder animals were characterized and bred to homozygosity. The data demonstrates that the sgRNAs tested were successful in creating multiple unique mutations at the erythroid enhancer target sites. These mutations were transmitted through the germline allowing the effect of individual edited alleles to be analyzed. The majority of the mutations showed marginal increases in the number of F-cells over control animals. Significantly, despite having homozygous mutation of the erythroid-enhancer in all cells, fetal hemoglobin expression remains heterocellular. Importantly, the therapeutic efficacy of reactivating fetal hemoglobin with specific Bcl11a erythroid-enhancer mutations for the treatment of beta thalassemia major and sickle cell anemia was directly measured in vivo in these humanized models of disease. The reactivation of gamma globin in these humanized mouse models provides us with an opportunity to further interrogate the Bcl11a enhancer element, identify additional factors involved in hemoglobin switching and elucidate the mechanism driving pancellular vs heterocellular fetal hemoglobin expression. Disclosures No relevant conflicts of interest to declare.

Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 776
Author(s):  
Kazutaka Terahara ◽  
Ryutaro Iwabuchi ◽  
Yasuko Tsunetsugu-Yokota

A variety of humanized mice, which are reconstituted only with human hematopoietic stem cells (HSC) or with fetal thymus and HSCs, have been developed and widely utilized as in vivo animal models of HIV-1 infection. The models represent some aspects of HIV-mediated pathogenesis in humans and are useful for the evaluation of therapeutic regimens. However, there are several limitations in these models, including their incomplete immune responses and poor distribution of human cells to the secondary lymphoid tissues. These limitations are common in many humanized mouse models and are critical issues that need to be addressed. As distinct defects exist in each model, we need to be cautious about the experimental design and interpretation of the outcomes obtained using humanized mice. Considering this point, we mainly characterize the current conventional humanized mouse reconstituted only with HSCs and describe past achievements in this area, as well as the potential contributions of the humanized mouse models for the study of HIV pathogenesis and therapy. We also discuss the use of various technologies to solve the current problems. Humanized mice will contribute not only to the pre-clinical evaluation of anti-HIV regimens, but also to a deeper understanding of basic aspects of HIV biology.


Blood ◽  
1988 ◽  
Vol 72 (5) ◽  
pp. 1771-1776
Author(s):  
S Shiokawa ◽  
H Yamada ◽  
Y Takihara ◽  
E Matsunaga ◽  
Y Ohba ◽  
...  

A DNA fragment containing the deletion junction region from a Japanese individual with homozygous delta beta-thalassemia has been cloned. A clone containing the normal DNA surrounding the 3′ breakpoint of this deletion and a clone carrying the G gamma- and A gamma-globin genes of this patient were also isolated. Sequences of the deletion junction and both gamma-globin genes were determined. A comparison of these sequences with previously determined sequences of the normal counterparts revealed that the 5′ breakpoint is located between 2,134 and 2,137 base pairs (bp) 3′ to the polyA site of the A gamma-globin gene, the 5′ breakpoint is located just downstream of the 3′ border of the fetal gamma-globin duplication unit, and no molecular defects are evident within the gamma-globin gene region. A comparison between the sequences of the normal DNA surrounding the 3′ breakpoint and the normal DNA surrounding the 5′ breakpoint shows that deletion is the result of a nonhomologous recombination event. There are A+T-rich stretches near the 5′ and 3′ breakpoints in the normal DNA, and a portion of an Aly repeat is located in the region 3′ to the 3′ breakpoint. Southern blot analysis using probes 3′ to the beta-globin gene showed that the deletion extends in the 3′ direction further than any other deletions associated with delta beta-thalassemia and hereditary persistence of fetal hemoglobin (HPFH) heretofore reported. These results are discussed in terms of the mechanism generating large deletions in mammalian cells and three models for the regulation of gamma-globin and beta-globin gene expression in humans.


Blood ◽  
1989 ◽  
Vol 74 (6) ◽  
pp. 1963-1971 ◽  
Author(s):  
P Constantoulakis ◽  
G Knitter ◽  
G Stamatoyannopoulos

Abstract To obtain information on the cellular mechanism of induction of fetal hemoglobin (HbF) by sodium butyrate (NaB), we treated adult baboons with NaB and assessed its effects on HbF expression. Infusion of NaB increased F reticulocytes and F-positive CFUe and e-cluster colonies without induction of reticulocytosis or increase in progenitor cell numbers. Addition of NaB in bone marrow cultures increased the frequency of F-positive CFUe and e-clusters without increasing progenitor cell numbers. NaB induced HbF in human adult BFUe cultures and increased the gamma/gamma + beta globin chain and mRNA ratios in short-term incubations of culture-derived erythroblasts. There was a synergistic induction of HbF by NaB and 5-azacytidine (5-azaC), but not when the animal was treated with NaB and cytarabine (AraC). Our results suggest that the activation of gamma-globin expression by NaB reflects an action of this compound on globin genes or globin chromatin.


Blood ◽  
1988 ◽  
Vol 72 (5) ◽  
pp. 1771-1776 ◽  
Author(s):  
S Shiokawa ◽  
H Yamada ◽  
Y Takihara ◽  
E Matsunaga ◽  
Y Ohba ◽  
...  

Abstract A DNA fragment containing the deletion junction region from a Japanese individual with homozygous delta beta-thalassemia has been cloned. A clone containing the normal DNA surrounding the 3′ breakpoint of this deletion and a clone carrying the G gamma- and A gamma-globin genes of this patient were also isolated. Sequences of the deletion junction and both gamma-globin genes were determined. A comparison of these sequences with previously determined sequences of the normal counterparts revealed that the 5′ breakpoint is located between 2,134 and 2,137 base pairs (bp) 3′ to the polyA site of the A gamma-globin gene, the 5′ breakpoint is located just downstream of the 3′ border of the fetal gamma-globin duplication unit, and no molecular defects are evident within the gamma-globin gene region. A comparison between the sequences of the normal DNA surrounding the 3′ breakpoint and the normal DNA surrounding the 5′ breakpoint shows that deletion is the result of a nonhomologous recombination event. There are A+T-rich stretches near the 5′ and 3′ breakpoints in the normal DNA, and a portion of an Aly repeat is located in the region 3′ to the 3′ breakpoint. Southern blot analysis using probes 3′ to the beta-globin gene showed that the deletion extends in the 3′ direction further than any other deletions associated with delta beta-thalassemia and hereditary persistence of fetal hemoglobin (HPFH) heretofore reported. These results are discussed in terms of the mechanism generating large deletions in mammalian cells and three models for the regulation of gamma-globin and beta-globin gene expression in humans.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nina B. Horowitz ◽  
Imran Mohammad ◽  
Uriel Y. Moreno-Nieves ◽  
Ievgen Koliesnik ◽  
Quan Tran ◽  
...  

Innate lymphoid cells (ILCs) are a branch of the immune system that consists of diverse circulating and tissue-resident cells, which carry out functions including homeostasis and antitumor immunity. The development and behavior of human natural killer (NK) cells and other ILCs in the context of cancer is still incompletely understood. Since NK cells and Group 1 and 2 ILCs are known to be important for mediating antitumor immune responses, a clearer understanding of these processes is critical for improving cancer treatments and understanding tumor immunology as a whole. Unfortunately, there are some major differences in ILC differentiation and effector function pathways between humans and mice. To this end, mice bearing patient-derived xenografts or human cell line-derived tumors alongside human genes or human immune cells represent an excellent tool for studying these pathways in vivo. Recent advancements in humanized mice enable unparalleled insights into complex tumor-ILC interactions. In this review, we discuss ILC behavior in the context of cancer, the humanized mouse models that are most commonly employed in cancer research and their optimization for studying ILCs, current approaches to manipulating human ILCs for antitumor activity, and the relative utility of various mouse models for the development and assessment of these ILC-related immunotherapies.


Blood ◽  
1989 ◽  
Vol 74 (6) ◽  
pp. 1963-1971 ◽  
Author(s):  
P Constantoulakis ◽  
G Knitter ◽  
G Stamatoyannopoulos

To obtain information on the cellular mechanism of induction of fetal hemoglobin (HbF) by sodium butyrate (NaB), we treated adult baboons with NaB and assessed its effects on HbF expression. Infusion of NaB increased F reticulocytes and F-positive CFUe and e-cluster colonies without induction of reticulocytosis or increase in progenitor cell numbers. Addition of NaB in bone marrow cultures increased the frequency of F-positive CFUe and e-clusters without increasing progenitor cell numbers. NaB induced HbF in human adult BFUe cultures and increased the gamma/gamma + beta globin chain and mRNA ratios in short-term incubations of culture-derived erythroblasts. There was a synergistic induction of HbF by NaB and 5-azacytidine (5-azaC), but not when the animal was treated with NaB and cytarabine (AraC). Our results suggest that the activation of gamma-globin expression by NaB reflects an action of this compound on globin genes or globin chromatin.


Blood ◽  
2006 ◽  
Vol 108 (6) ◽  
pp. 2081-2086 ◽  
Author(s):  
Patricia A. Oneal ◽  
Nicole M. Gantt ◽  
Joseph D. Schwartz ◽  
Natarajan V. Bhanu ◽  
Y. Terry Lee ◽  
...  

Abstract Interruption of the normal fetal-to-adult transition of hemoglobin expression should largely ameliorate sickle cell and beta-thalassemia syndromes. Achievement of this clinical goal requires a robust understanding of gamma-globin gene and protein silencing during human development. For this purpose, age-related changes in globin phenotypes of circulating human erythroid cells were examined from 5 umbilical cords, 99 infants, and 5 adult donors. Unexpectedly, an average of 95% of the cord blood erythrocytes and reticulocytes expressed HbA and the adult beta-globin gene, as well as HbF and the gamma-globin genes. The distribution of hemoglobin and globin gene expression then changed abruptly due to the expansion of cells lacking HbF or gamma-globin mRNA (silenced cells). In adult reticulocytes, less than 5% expressed gamma-globin mRNA. These data are consistent with a “switching” model in humans that initially results largely from gamma- and beta-globin gene coexpression and competition during fetal development. In contrast, early postnatal life is marked by the rapid accumulation of cells that possess undetectable gamma-globin mRNA and HbF. The silencing phenomenon is mediated by a mechanism of cellular replacement. This novel silencing pattern may be important for the development of HbF-enhancing therapies.


Blood ◽  
2016 ◽  
Vol 128 (14) ◽  
pp. 1829-1833 ◽  
Author(s):  
Yasuyuki Saito ◽  
Jana M. Ellegast ◽  
Anahita Rafiei ◽  
Yuanbin Song ◽  
Daniel Kull ◽  
...  

Key Points Human cytokine knock-in mice are improved in vivo models for multilineage engraftment of mobilized PB CD34+ cells. Humanized mouse models might open new avenues for personalized studies of human pathophysiology of the hematopoietic and immune system.


Blood ◽  
1987 ◽  
Vol 70 (5) ◽  
pp. 1470-1474 ◽  
Author(s):  
GF Atweh ◽  
XX Zhu ◽  
HE Brickner ◽  
CH Dowling ◽  
HH Jr Kazazian ◽  
...  

A new type of delta beta-thalassemia characterized by decreased expression of the beta-globin gene and increased expression of both G gamma and A gamma globin gene in the absence of a detectable deletion has recently been described in the Chinese population. In this study we characterize the mutant beta-globin gene from this delta beta- thalassemia chromosome. An A to G transversion is identified in the “ATA” sequence of the promoter region that leads to decreased expression of the beta-globin gene in vivo and in vitro. We also demonstrate the presence of this mutation in every individual with a high fetal hemoglobin phenotype in this family and its absence in every individual with a normal hemoglobin phenotype. This same promoter mutation has recently been detected in Chinese beta-thalassemia genes where it is present on chromosomes of the same haplotype as that of the delta beta-thalassemia chromosome we are studying. These data support the hypothesis that an as yet unidentified mutation occurred on the ancestral chromosome carrying the promoter mutation and subsequently gave rise to the delta beta-thalassemia phenotype.


Sign in / Sign up

Export Citation Format

Share Document