scholarly journals Platelet Factor 4 Induces Leukocyte Responses through Integrin Mac-1 (CD11b/CD18)

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2529-2529
Author(s):  
Nataly P. Podolnikova ◽  
Valentin P. Yakubenko ◽  
Tatiana P. Ugarova

Abstract The proteins/peptides secreted from α-granules of activated platelets not only aid in thrombus formation and blood coagulation, but also exert various immune-modulating effects. Among many secreted products, Platelet Factor 4 (PF4), a chemokine that belongs to the CXC family, is one of the most abundant platelet proteins. While PF4 assignment to the chemokine family is based on its structural similarity with other CXC chemokines and chemotactic activity, to date no receptor for PF4 on leukocytes has been identified. Our recent elucidation of the recognition specificity of a major leukocyte integrin αMβ2 (Mac-1) allowed the prediction that PF4 contains several putative Mac-1 recognition motifs and thus could potentially interact with this receptor. Using a peptide library spanning the sequence of PF4, we showed that the αMI-domain of Mac-1 bound several overlapping PF4-derived peptides. The biolayer interferometry analyses demonstrated that PF4 bound recombinant active αMI-domain of Mac-1 in a concentration-dependent manner with a KD of 1.3 ± 0.2x10-6 M. No interaction of PF4 with the inactive αMI-domain (α7 helix extended) or the αLI-domain of a homologous integrin αLβ2 was detected. The full-length recombinant PF4 and the αMI-domain-binding peptide (residues 58-70) identified in the peptide library supported strong adhesion and spreading of Mac-1-expressing cells, including neutrophils, U937 monocytic and Mac-1-transfected HEK293 cells. The cell adhesion to PF4 was partially inhibited by anti-Mac-1 mAbs and completely blocked when anti-Mac-1 antibodies were combined with heparin, suggesting that cell surface proteoglycans act cooperatively with integrin Mac-1. PF4 induced a potent migratory response of wild-type, but not Mac-1-deficient, macrophages in a Transwell system. PF4 also enhanced phagocytosis: coating of E. coli bacteria or latex beads with PF4 enhanced ~ 4-fold their phagocytosis by macrophages, and this process was blocked by different Mac-1 antagonists. Furthermore, PF4 potentiated phagocytosis by wild-type, but not Mac-1-deficient, macrophages. These results identify PF4 as a ligand for integrin Mac-1 and suggest that many immune-modulating effects previously ascribed to PF4 are mediated via interaction with Mac-1. Disclosures No relevant conflicts of interest to declare.

2016 ◽  
Vol 32 (7) ◽  
pp. 705-717 ◽  
Author(s):  
Zahra F. Parker ◽  
Ann H. Rux ◽  
Amber M. Riblett ◽  
Fang-Hua Lee ◽  
Lubica Rauova ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3391-3391
Author(s):  
Georgios Pongas ◽  
Swapan Dasgupta ◽  
Perumal Thiagarajan

Abstract Abstract 3391 Introduction The anti-platelet factor 4(PF4)/heparin antibodies, arising as a result of previous heparin exposure, are causally related to the procoagulant state due to platelet and monocyte activation. Formation of these antibodies with subsequent thrombocytopenia or thrombosis has also been described in patients, who have not been previously exposed to heparin. The presence of anti-PF4/heparin antibodies in individuals correlates with the severity of periodontal disease, implying that their occurrence may be triggered by periodontal pathogens. In this study, we determined the presence of anti-PF4/heparin antibodies in gram-negative bacteremic patients in a hospital setting and propose a pathophysiologic mechanism of their presence. Method We developed an in house ELISA for quantifying anti-PF4/heparin antibodies using therapeutic heparin and PF4 isolated from platelets. We used serum from a patient with high optical density as a standard and assigned an unit of 100 arbitrarily to construct a standard curve. We tested the sera from gram negative bacteremic patients (n= 34) in the quantitative ELISA along with normal controls (n=10). We also developed an in house ELISA for studying cross reactivity between anti-PF4/heparin antibodies and lipopolysaccharide (LPS)/PF4. We tested the sera from patients (n=5) with heparin induced thrombocytopenia in this cross reactivity ELISA. To test the interaction of LPS with PF4, we labeled PF4 with Alexa488 and measured its binding to LPS by monitoring the changes in fluorescence emission spectrum following excitation at λ480. Results Patients with bacteremia had higher titers of antiPF4/heparin antibodies compared to normal controls (26.4 ± SD 33 units, N=34 versus 6.3 ± SD 2.38 units, N=10, P=0.032). Bacterial LPS interacted with alexa488-labeled PF4 in a concentration-dependent manner, as measured by the quenching of the excitation spectrum. Patients with ant-PF4/heparin antibodies also reacted with LPS/PF4 complex in ELISA. Prior absorption of serum with PF4/heparin complex coated on ELISA plates decreased the reactivity of the serum towards PF4/LPS complex (19–46%) in two out of the five patients tested suggesting some were cross-reaction between PF4/Heparin and PF4/LPS complex. Conclusions PF4 forms a complex with lipopolysaccharide and this complex is immunogenic. Antibodies to PF4/LPS complex can cross-react with PF4/heparin complex raising the possibility that these antibodies may be responsible for the detection of PF4/heparin in individuals never been exposed to heparin previously. These antibodies may also be at least partly responsible for increased thrombosis associated with infection. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 770-770 ◽  
Author(s):  
Yingying Mao ◽  
Todd M Getz ◽  
Jianguo Jin ◽  
Satya P. Kunapuli

Abstract Abstract 770 Protease-activated receptors (PARs) are G-protein coupled receptors that are activated by proteases. Thrombin is the major agonist for PAR1 and PAR4, whereas tryptase and coagulation factor Xa are the agonists for PAR2. In addition to these major agonists, PARs can be activated by other coagulation proteases. The physiological agonist of PAR3 has not been identified to date; as a result, the molecular pharmacology and physiology of PAR3 remain poorly understood. The purpose of this study is to identify a physiological agonist to PAR3. We used PAR4 null murine platelets, which are known to express only PAR3. In this study, we tested the effect of several coagulation proteases and found that only coagulation factor XIIa (FXIIa) activated PAR4-/- murine platelets, in a concentration-dependent manner. FXIIa caused murine platelet shape change, aggregation, secretion and thromboxane A2 generation and this activation was abolished by C1 esterase inhibitor, a FXIIa inhibitor. FXIIa-induced murine platelet activation was completely abolished by BMS200261, a PAR1 antagonist, without affecting the catalytic activity of FXIIa. As murine platelets do not express PAR1, these data indicate that BMS200261 acts as an antagonist of PAR3 and hence inhibits FXIIa-induced platelet activation. FXIIa also caused mobilization of intracellular calcium from murine platelets and this calcium increase is abolished by BMS200261 in the presence or absence of the PAR4. PAR1 and PAR4 couple to Gq to cause intracellular calcium increases. YM-254890, a Gq inhibitor, abrogates PAR1- or PAR4-mediated calcium mobilization. However, YM-254890 did not affect FXIIa –induced platelet calcium mobilization in murine platelets. FXIIa caused activation of Gq-/- mice platelets similar to wild -type platelets, suggesting that FXIIa -induced calcium mobilization in platelets is independent of Gq pathways. Furthermore, FXIIa-induced platelet activation was completely abolished by BAPTA-AM, which indicates that calcium is required for FXIIa-induced platelet activation. Furthermore, FXIIa caused phosphorylation of Erk and Akt in PAR4 null murine platelets and this phosphorylation was abolished by BMS200261, but not by YM-254890. These observations may explain previous reports that demonstrated lack of stable thrombus formation in FXII null mice. We conclude that FXIIa activates platelets through PAR3 independently of Gq pathways leading to calcium mobilization and activation of Erk and Akt. Disclosures: No relevant conflicts of interest to declare.


1981 ◽  
Author(s):  
K Weerasinghe ◽  
M F Scully ◽  
V V Kakkar

The contact activation of FXII by dextran sulphate (DS, MW 500,000) has been shown to be inhibited by platelet factor 4 (PF4). Plasma was prepared from blood taken with EDTA, theophylline and PGE1. Contact activation was initiated by the addition of an equal volume of DS (10μg/ml) and incubating at 0° (8 min) or 37° (2 min). The kallikrein generated was measured using S2302. Addition of purified PF4 to plasma caused a concentration dependent inhibition with complete inhibition at greater than 2.0μg/PF4/ml plasma (molar ratio of 20:1). PF4 was also observed in a concentration dependent manner to inhibit clotting of plasma as initiated by dextran sulphate.Repeated freezing of human PRP (Av. platelet count=3.55 × 108/ml) released PF4 (as measured by radioimmunoassay) and caused inhibition of contact activation. By dilution with PPP, the degree of inhibition was found to be related to the concentration of PF4. The amount needed for 50% inhibition varied from 0.2-1.5μg/ml in different donors. Platelet aggregation with epinephrine (2μg/ml) released 4.8μg/ml (±1.7) of PF4 and showed 55% (±22) inhibition of contact activation (n=ll). Collagen (5.7μg/ml) caused 4.9μg/ml (±1.3) of PF4 to be released, but the degree of inhibition varied (n=13). The discrepancy between this and the freezing experiment may be due to the “contact-product activator” properties of collagen and the intact platelet membrane. Control experiments performed using indomethacin or EDTA-PRP showed no release of PF4 or inhibition of contact activation.The effect observed appears to be related directly to the ability of PF4 to bind to negatively charged polysaccharides since PF4 was not found to inhibit activated factor XII or kallikrein. These results indicate another role for PF4 as an inhibitor of contact activation. Together with its known antiheparin properties it indicates that PF4 may be closely involved in the control of haemostasis.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1131-1131
Author(s):  
Jasna Marjanovic ◽  
Brad Rumancik ◽  
Luke Weber ◽  
Felix Wangmang ◽  
Dane Fickes ◽  
...  

Abstract Phosphatidylinositol-3,4-bisphosphate (PtdIns(3,4)P2) is a messenger that accumulates in platelets in a phosphoinositide 3-kinase and platelet aggregation-dependent manner. PtdIns(3,4)P2 is broken down by inositol polyphosphate 4-phosphatases, type I (INPP4A) and type II (INPP4B). These enzymes do not catalyze hydrolysis of phosphoinositides other than PtdIns(3,4)P2, and therefore provide unique means for studying the role of this lipid in platelet activation. We have found that the dominant isoform of 4-phosphatases expressed in platelets is INPP4A and we have generated radiation chimera mice with the deficiency in INPP4A restricted to hematopoietic cell lineage. Compared to wild type platelets, agonist-stimulated INPP4A-deficient platelets accumulated higher levels of PtdIns(3,4)P2. An increase in platelet aggregation in INPP4A-deficient platelets was observed with all tested agonists. To study platelet function in vivo, we performed carotid artery injury mouse thrombosis model experiments. Time to occlusion was dramatically reduced in mice with INPP4A deficiency. These data support the hypothesis that by regulating PtdIns(3,4)P2 levels, INPP4A downregulates platelet aggregation and thrombus formation. To investigate mechanisms mediating INPP4A-dependent signals, we compared levels of phosphorylated Akt and phosphorylated glycogen synthase kinase (GSK) in wild type and INPP4A-deficient platelets in response to agonist stimulation. An increase in phospho-Akt levels was observed in INPP4A-deficient platelets, suggesting that in addition to its well-characterized regulator, PtdIns(3,4,5)P3, PtdIns(3,4)P2 can promote Akt activation. Interestingly, this was not accompanied by a significant increase in phospho-GSK levels, suggesting a possible novel mechanism involved in platelet aggregation. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 370-370
Author(s):  
Freda H. Passam ◽  
Lin Lin ◽  
Mingdong Huang ◽  
Jonathan M. Gibbins ◽  
Bruce Furie ◽  
...  

Abstract Abstract 370 Protein disulfide isomerase is required for thrombus formation in various in vivo models of thrombosis. Another member of the thiol isomerase family, endoplasmic reticulum protein 5 (ERp5), is released from activated platelets and co-immunoprecipitates with beta 3 integrin (Jordan et al, 2005). We further investigated the association of ERp5 with the platelet fibrinogen receptor alpha IIb beta 3 and the significance of ERp5 release in thrombus formation in vivo. Recombinant purified ERp5 was labeled with Alexa 488 and used in direct binding assays to CHO cells expressing wild type (WT) alpha IIb beta 3, CHO cells expressing mutant alpha IIb beta 3 (containing an Asp119Tyr substitution in the beta 3 subunit) and to control CHO cells. The mutant alpha IIb beta 3 does not bind fibrinogen. ERp5 bound to CHO cells expressing wild type (WT) alpha IIb beta 3 in a dose-dependent manner but did not bind to CHO cells expressing mutant alpha IIb beta 3 or to control CHO cells. The relative increase in the geomean of Alexa 488-labeled ERp5 binding to 0.5 ×106 WT alpha IIb beta 3 CHO cells over that bound to control CHO cells was 20, 45 and 85% for ERp5 concentrations of 80, 160 and 400 nM respectively. Binding of ERp5 (160 nM) to WT alpha IIb beta 3 expressing CHO cells was further increased by 75% when the integrin was activated with 2 mM Mn2+ compared to non-activated WT alpha IIb beta 3 CHO cells. A role for ERp5 in thrombus formation was studied in the laser injury model of thrombosis in mouse cremaster arterioles using a rabbit polyclonal anti-ERp5 antibody, immunoaffinity purified against recombinant ERp5. This antibody detected ERp5 in the releasate of thrombin-activated mouse platelets in vitro by Western blot and on the surface of thrombin-activated mouse platelets by flow cytometry. Dylight 649-labeled anti-CD42b was infused into the mouse circulation to detect platelet accumulation and Alexa 488-labeled anti-ERp5 antibody at 0.05 ug/g, a dose that does not inhibit thrombus formation, was infused to detect ERp5. The fluorescent anti-ERp5 signal detected at the thrombus site was compared to the signal produced by a non-specific IgG labeled with Alexa 488 infused into a control mouse. Anti-ERp5 fluorescence was detected in the thrombus with kinetics that followed platelet accumulation whereas there was minimal signal from the control IgG. We examined whether higher doses of anti-ERp5 affect thrombus formation. Platelet and fibrin accumulation were detected using fluorescently labeled anti-CD42b antibody and monoclonal anti-fibrin-specific antibody respectively before or after the injection of unlabeled anti-ERp5 antibody or pre-immune IgG at 2.5 ug/g. Platelet and fibrin accumulation, expressed as area under the curve of the median integrated fluorescence over time, was obtained from 14 thrombi in 6 mice formed before infusion of antibody, 18 thrombi in 2 mice formed after infusion of control IgG and 29 thrombi in 3 mice formed after infusion of anti-ERp5. Anti-ERp5 infusion caused a 70% decrease in the deposition of platelets and a 62% decrease in fibrin accumulation compared to infusion of control antibody (p<0.01). There was no difference in platelet and fibrin accumulation before infusion of antibody and after infusion of control antibody. These results provide evidence for a role of a second thiol isomerase, ERp5, in thrombus formation, a function which may be mediated through its association with alpha IIb beta 3. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 94-94
Author(s):  
Bhanukanth Manne ◽  
Todd M Getz ◽  
Craig Hughes ◽  
Carol T Dangelmaier ◽  
Steve P Watson ◽  
...  

Abstract Abstract 94 Fucoidan, a sulphated polysaccharide from fucus vesiculosus, decreases bleeding time and clotting time in hemophilia, possibly through inhibition of tissue factor pathway inhibitor (TFPI) (Prasad et al., Blood 111:672, 2008). The decrease in bleeding times in the hemophilia animal models by in vivo administration of fucoidan suggests the beneficial effect of fucoidan as a novel treatment. Furthermore, in vitro studies using platelet poor plasma from hemophilia animal models and human patients has shown that fucoidan inhibits TFPI thereby contributing to an increase in the extrinsic coagulation pathway activity. The effect of fucoidan on platelets however has not been studied. As it is known that the platelet count remains unaffected in hemophilia A patients and bleeding times are primarily measured to assess normal platelet function, we hypothesize that the decrease in bleeding times in the hemophilia animal models may be due to platelet activation by fucoidan. In this study, we demonstrate for the first time that fucoidan induces platelet activation in a concentration dependent manner. Fucoidan-induced platelet activation is completely abolished by the pan-Src family kinase (SFK) inhibitor, PP2, and in the absence of Syk and PLC-g2. Furthermore, fucoidan-induced platelet activation has a lag phase, which is reminiscent of platelet activation by collagen and by CLEC-2 receptor agonists. Platelet activation by fucoidan however was only slightly inhibited in FcRg-chain null mice indicating that fucoidan is not acting primarily through GPVI receptor. On the other hand, fucoidan-induced platelet activation was inhibited in CLEC-2 deficient mouse platelets revealing CLEC-2 as a physiological target of fucoidan. Thus, our data shows fucoidan as a novel CLEC-2 receptor agonist that activates platelets through an SFK-dependent signaling pathway. Further, the efficacy of fucoidan in hemophilia raises the possibility that decreased bleeding times could be achieved through activation of platelets. A) Fucoidan induces platelet activation: Washed aspirin-treated human platelets were stimulated with increasing concentrations of fucoidan at 37°C. Platelet aggregation was measured using a Lumi-aggregometer. The tracings are representative of data from at least three independent experiments. B) Effect of SFK inhibition on fucoidan-induced platelet activation: Washed aspirin-treated human platelets were pre-treated with SFK inhibitor PP2 10uM or PP3 (vehicle) at 37°C for 5 min followed by stimulation with fucoidan (50 ug/ml) for 3 minutes under stirred conditions. Platelet aggregation was measured using Lumi-aggregometer and effect on phosphorylation of Syk (Y525/26) and LAT (Y191) in the presence of SFK inhibitor PP2 an PP3 (control) were analyzed. The results are representative of data from platelets at least three independent experiments. C) Identifying a possible receptor for fucoidan on platelets: Wild type, FcRg-chain or CLEC-2 null murine platelets were stimulated with fucoidan (50 ug/ml) at 37°C under stirred conditions and aggregation was measured using Lumi-aggregometer. A) Fucoidan induces platelet activation: Washed aspirin-treated human platelets were stimulated with increasing concentrations of fucoidan at 37°C. Platelet aggregation was measured using a Lumi-aggregometer. The tracings are representative of data from at least three independent experiments. . / B) Effect of SFK inhibition on fucoidan-induced platelet activation: Washed aspirin-treated human platelets were pre-treated with SFK inhibitor PP2 10uM or PP3 (vehicle) at 37°C for 5 min followed by stimulation with fucoidan (50 ug/ml) for 3 minutes under stirred conditions. Platelet aggregation was measured using Lumi-aggregometer and effect on phosphorylation of Syk (Y525/26) and LAT (Y191) in the presence of SFK inhibitor PP2 an PP3 (control) were analyzed. The results are representative of data from platelets at least three independent experiments. . / C) Identifying a possible receptor for fucoidan on platelets: Wild type, FcRg-chain or CLEC-2 null murine platelets were stimulated with fucoidan (50 ug/ml) at 37°C under stirred conditions and aggregation was measured using Lumi-aggregometer. Disclosures: No relevant conflicts of interest to declare.


2003 ◽  
Vol 69 (5) ◽  
pp. 2521-2532 ◽  
Author(s):  
C. Lange ◽  
D. Rittmann ◽  
V. F. Wendisch ◽  
M. Bott ◽  
H. Sahm

ABSTRACT Addition of l-valine (50 to 200 mM) to glucose minimal medium had no effect on the growth of wild-type Corynebacterium glutamicum ATCC 13032 but inhibited the growth of the derived valine production strain VAL1 [13032 ΔilvA ΔpanBC(pJC1ilvBNCD)] in a concentration-dependent manner. In order to explore this strain-specific valine effect, genomewide expression profiling was performed using DNA microarrays, which showed that valine caused an increased ilvBN mRNA level in VAL1 but not in the wild type. This unexpected result was confirmed by an increased cellular level of the ilvB protein product, i.e., the large subunit of acetohydroxyacid synthase (AHAS), and by an increased AHAS activity of valine-treated VAL1 cells. The conclusion that valine caused the limitation of another branched-chain amino acid was confirmed by showing that high concentrations of l-isoleucine could relieve the valine effect on VAL1 whereas l-leucine had the same effect as valine. The valine-caused isoleucine limitation was supported by the finding that the inhibitory valine effect was linked to the ilvA deletion that results in isoleucine auxotrophy. Taken together, these results implied that the valine effect is caused by competition for uptake of isoleucine by the carrier BrnQ, which transports all branched-chained amino acids. Indeed, valine inhibition could also be relieved by supplementing VAL1 with the dipeptide isoleucyl-isoleucine, which is taken up by a dipeptide transport system rather than by BrnQ. Interestingly, addition of external valine stimulated valine production by VAL1. This effect is most probably due to a reduced carbon usage for biomass production and to the increased expression of ilvBN, indicating that AHAS activity may still be a limiting factor for valine production in the VAL1 strain.


Life ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 939
Author(s):  
Pia Loreto Werlinger Bravo ◽  
Hui Jin ◽  
Hyunwoo Park ◽  
Min Sang Kim ◽  
Hirofumi Matsui ◽  
...  

Cardiovascular diseases, such as stroke, are the most common causes of death in developed countries. Ischemic stroke accounts for 85% of the total cases and is caused by abnormal thrombus formation in the vessels, causing deficient blood and oxygen supply to the brain. Prophylactic treatments include the prevention of thrombus formation, of which the most used is acetylsalicylic acid (ASA); however, it is associated with a high incidence of side effects. Angelica gigas Nakai (AG) is a natural herb used to improve blood circulation via anti-platelet aggregation, one of the key processes involved in thrombus formation. We examined the antithrombotic effects of AGE 232, the ethanol extract of A. gigas Nakai. AGE 232 showed a significant reduction in death or paralysis in mice caused by collagen/epinephrine-induced thromboembolism in a dose-dependent manner and inhibition of collagen-induced human platelet aggregation in a concentration-dependent manner. Additionally, AGE 232-treated mice did not show severe bleeding in the gut compared to ASA-treated mice. AGE 232 resulted in a decrease in the number of neutrophils attached to the human umbilical vein endothelial cells (HUVECs) and lower inhibition of COX-1 in response to bleeding and damage to blood vessels, a major side effect of ASA. Therefore, AGE 232 can prevent thrombus formation and stroke.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3908-3908
Author(s):  
Bruce S. Sachais ◽  
Peihong Ma ◽  
Ann H. Rux ◽  
Guangyao Yu

Abstract The involvement of platelets in the pathogenesis of atherosclerosis has recently gained much attention. Platelet factor 4 (PF4) is a platelet specific chemokine released upon platelet activation. PF4 has been localized to atherosclerotic lesions, including macrophages and endothelium. In this report, we demonstrate that E-selectin, an adhesion molecule involved in atherogenesis, is up-regulated in human umbilical vein endothelial cells exposed to PF4. Induction of E-selectin mRNA is time and dose dependent, and requires the presence of cell surface glycosaminoglycans. Surface expression of E-selectin, as measured by flow cytometry, is also increased by PF4. Activation of NF-κB is critical for PF4 induced E-selectin expression, as demonstrated by promoter activation studies and electrophoretic mobility shift assays. In summary, our data demonstrate that PF4 can increase expression of E-selectin by endothelial cells by activation of NF-κB. PF4 induction of endothelial E-selectin expression represents another mechanism by which platelets may participate in atherosclerotic lesion progression. These data also suggest that PF4 may participate in the proinflammatory functions of activated platelets.


Sign in / Sign up

Export Citation Format

Share Document