Promyelocytic Extracellular Chromatin Exacerbates Coagulation Disorder in Acute Promyelocytic Leukemia

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3806-3806
Author(s):  
Muhua Cao ◽  
Ruishuang Ma ◽  
Xiaoming Wu ◽  
Lixiu Wang ◽  
Lu Zhao ◽  
...  

Abstract Introduction:Despite treatment with all-trans-retinoic acid, the early death rate in unselected acute promyelocytic leukemia (APL) due to hemorrhage still remains unacceptably high. It is attractive to speculate whether other uncovered procoagulants exist which are not attenuated by ATRA. We have recently demonstrated that APL cells undergo a novel cell death program, termed ETosis, which involves release of extracellular chromatin (Ma R et al, Cell Death Dis 2016). However, the role of promyelocytic extracellular chromatin in APL-associated coagulation disorder remains unclear. The aims of this study were to identify the novel role of extracellular chromatin in induction of the hypercoagulable state in APL, and to evaluate its interaction with fibrin and endothelial cells (ECs). Methods:Twenty-two newly diagnosed APL patients were included. Fresh APL blasts from bone marrow specimens were treated with 1 μM ATRA or phosphate buffered saline (PBS). ETosis was distinguished by rounded cells whose nuclei stained with PI and whose nuclear contents diffused throughout the cell. Cell-free DNA (cf-DNA) was quantified using the Quant-iT PicoGreen dsDNA Assay Kit. Elastase-DNA complexes and TAT (thrombin-antithrombin) complexes were detected by ELISA. ECs were incubated in growth media containing 20% pooled serum obtained from healthy donors in the presence or absence of 20-fold concentrated extracellular chromatin. Procoagulant activity (PCA) of ECs and APL cells was evaluated by one-stage recalcification time assay, pro-thrombinase assay and fibrin formation assay. DNase I or anti-TF were included in the inhibition assays. Results: ATRA treatment induced markedly increased cf-DNA release in a time-dependent manner compared with no ATRA group. Furthermore, ETosis was the major cell death pattern in the ATRA-treated group while apoptosis was predominant in the no-treatment group until the third day, indicating that the increased cell-free DNA triggered by ATRA was mainly from ETosis. NE-DNA, defined as marker of ETosis, peaked on day 3 and showed no significant elevation to day 5, indicating that increased part of cf-DNA from day 3 to day 5 was mainly from apoptosis. Additionally, thrombin generation was found to parallel the change in the releasing of promyelocytic extracellular chromatin induced by ATRA. Pretreatment with DNase I inhibited thrombin generation by 47%, diminished PCA by 35%, prolonged coagulation time, and attenuated fibrin formation by 50%, while neutralizing anti-TF antibody produced no effect. Confocal microscopy showed that fibrin was preferentially deposited on promyelocytic chromatin from ETosis or apoptosis and exposed PS. Lastly, we found that extracellular chromatin from the ATRA group significantly triggered PS exposure on ECs, converting them to a pro-coagulant phenotype. This cytotoxity was blocked by DNase I by 20% or activated protein C (APC) by 31% indicating that DNA scaffold and histones were both necessary for the cytotoxic effect of extracellular chromatin. Conclusions:ATRA promotes procoagulant promyelocytic extracellular chromatin mainly through ETosis. Extracellular chromatin fosters excess thrombin generation, increases fibrin deposition, and causes endothelium damage. To improve the remaining coagulation disturbance in APL patients of high risks during ATRA administration, therapeutic strategies focusing on combined application of DNase I and APC to accelerate the degradation of overwhelmed promyelocytic extracellular chromatin would be of great interest in the future. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3770-3770
Author(s):  
Tao Li ◽  
Xiaoyan Yang ◽  
Yan Zhang ◽  
Baorong LI ◽  
Yinmiao Liu ◽  
...  

Abstract Background: Despite dramatic improvement in treatment for acute promyelocytic leukemia (APL), early death due to hemorrhage remains a major obstacle to achieving a complete cure. In contrast to classical disseminated intravascular coagulation, APL-associated coagulopathy is characterized by rare microvascular fibrin thrombi. Thus, it is attractive to speculate whether other unknown mechanisms depleting coagulation factors and unrecognized fibrin-deposition location exist. Procoagulant activity associated with APL cells plays a direct role in bleeding complicationsin. We have shown that exposed phosphatidylserine (PS) on APL cells supports purified prothrombinase (Zhou J et al, JTH 2010) and fibrin preferentially deposits on promyelocytic chromatin from ETosis or apoptosis (Cao M et al, Blood 2017). However, relatively little is known about the PS-driven prothrombinase complex assembly and in situ fibrin deposition on APL cells. Aims: Our objectives were to determine how APL cells promote thrombin generation and modulate fibrin formation and distribution, as well as to explore the relationship between in situ fibrin deposition and consumptive hemorrhage in APL patients. Methods: Twenty-seven newly diagnosed APL patients were included. Fresh APL blasts were obtained from bone marrow specimens by centrifugation through Ficoll-Hypaque. Lactadherin was used as a probe for PS exposure on the fresh APL blasts and on an immortalized APL cell line (NB4). PS exposure and fluorescein-labeled FV/X binding were evaluated by flow cytometry. Thrombin generation was measured by modifed thrombin generation test. Fibrin production was quantified by turbidity. The distribution of PS, prothrombinase complex and in situ fibrin deposition were imaged by confocal microscopy. For the inhibition assay, APL cells were pre-treated with lactadherin, DNase I or anti-TF antibody for 10 min at 37 °C before incubation with plasma. Results: Thrombin generation and fibrin formation supported by NB4 and APL cells increased approximately 1.5-fold after exposure to daunorubicin and decreased 80% after treatment with all-trans retinoic acid (ATRA) or arsenic trioxide (ATO). Procoagulant activity corresponded to exposed PS on viable APL cells. PS exposure increased approximately 2.7-fold after treatment with daunorubicin, while ATRA and ATO initially led to a 70% reduction in PS exposure, which rose again on day 3 and 5 (P<0.001), respectively. Levels of externalized PS on APL cells paralleled levels of FV/FX binding, lag time, peak thrombin, endogenous thrombin potential and fibrin formation. Lactadherin inhibited the above parameters by approximately 80%, while anti-tissue factor antibody or DNase I produced no effect. Interestingly, confocal imaging showed that fibrin preferentially deposited on the surface of APL cells, which we defined as "in situ fibrin". Untreated viable APL and NB4 cells displayed discrete or occasionally annular fibrin deposition on the membrane. Moreover, fibrin formation supported by apoptotic APL cells displayed the following progression: (i) patchy deposition, (ii) diffuse rim, (iii) "fibrin coat", and (iv) network. The dynamic changes in fibrin formation paralleled the kinetics of PS exposure and prothrombinase assembly. Furthermore, initial percentage of PS-positive fresh APL cells was negatively correlated with plasma levels of fibrinogen and factor II, V, VIII, X in APL patients on admission (all P<0.01). Conclusion: PS-driven prothrombinase complex assembly and in situ fibrin deposition on the surface of APL cells consume massive coagulation factors, providing a novel explanation for consumptive hemorrhage in APL patients. Blockade of PS might be a novel therapeutic approach for preventing bleeding in APL via inhibiting invisible "in situ coagulation", especially in high-risk APL. Disclosures No relevant conflicts of interest to declare.



Author(s):  
K. G. Avetisova ◽  
◽  
S. V. Kostyuk ◽  
E. V. Kostyuk ◽  
E. S. Ershova ◽  
...  
Keyword(s):  
Dnase I ◽  


Author(s):  
Lorenzo Gerratana ◽  
Andrew A. Davis ◽  
Ami N. Shah ◽  
Chenyu Lin ◽  
Carla Corvaja ◽  
...  
Keyword(s):  


2021 ◽  
Vol 17 (1) ◽  
pp. 12-17
Author(s):  
Yang Zhou ◽  
Dongrui Cheng ◽  
Tingya Jiang


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Brian C.-H. Chiu ◽  
Chang Chen ◽  
Qiancheng You ◽  
Rudyard Chiu ◽  
Girish Venkataraman ◽  
...  

AbstractThe 5-methylcytosines (5mC) have been implicated in the pathogenesis of diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL). However, the role of 5-hydroxymethylcytosines (5hmC) that are generated from 5mC through active demethylation, in lymphomagenesis is unknown. We profiled genome-wide 5hmC in circulating cell-free DNA (cfDNA) from 73 newly diagnosed patients with DLBCL and FL. We identified 294 differentially modified genes between DLBCL and FL. The differential 5hmC in the DLBCL/FL-differentiating genes co-localized with enhancer marks H3K4me1 and H3K27ac. A four-gene panel (CNN2, HMG20B, ACRBP, IZUMO1) robustly represented the overall 5hmC modification pattern that distinguished FL from DLBCL with an area under curve of 88.5% in the testing set. The median 5hmC modification levels in signature genes showed potential for separating patients for risk of all-cause mortality. This study provides evidence that genome-wide 5hmC profiles in cfDNA differ between DLBCL and FL and could be exploited as a non-invasive approach.



1997 ◽  
Vol 75 (5-6) ◽  
pp. 195-200 ◽  
Author(s):  
X. Thomas ◽  
B. Anglaret ◽  
A. Thiebaut ◽  
A. Belhabri ◽  
D. Treille-Ritouet ◽  
...  




2001 ◽  
Vol 38 (1) ◽  
pp. 71-85 ◽  
Author(s):  
Gérard R Benoit ◽  
Jien-Hua Tong ◽  
Zoltan Balajthy ◽  
Michel Lanotte


Sign in / Sign up

Export Citation Format

Share Document