scholarly journals SL-401, a Targeted Therapy Directed to the Interleukin-3 Receptor (CD123), and SL-801, a Reversible Inhibitor of Exportin-1 (XPO1), Display Synergistic Anti-Tumor Activity Against Hematologic Malignancies in Vitro

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4724-4724 ◽  
Author(s):  
John Gionco ◽  
Janice Chen ◽  
Ross Lindsay ◽  
Vince Macri ◽  
Christopher L. Brooks

Abstract Background: Novel combination therapies have shown success in combating tumor heterogeneity and drug resistance. SL-401 is a targeted therapy directed to the interleukin-3 receptor (CD123), which is overexpressed on numerous hematologic malignancies. SL-401 has demonstrated high single agent response rates in an ongoing Phase 2 trial of blastic plasmacytoid dendritic cell neoplasm (BPDCN) and is also being evaluated in the clinic for additional cancers, including acute myeloid leukemia (AML) and myeloproliferative neoplasms (MPNs) as a single agent, and multiple myeloma (MM) in combination with other agents. While SL-401 has demonstrated robust single agent clinical activity in patients with BPDCN, its unique mechanism of action and non-overlapping side effect profile with other agents may lend itself to combination therapy as well. Another class of drugs that has demonstrated clinical activity against several hematologic and solid malignancies is Exportin-1 (XPO1) inhibitors. SL-801 is a novel oral small molecule that reversibly inhibits XPO1 and has shown potent in vitro and in vivo anti-tumor activity against a broad range of hematologic and solid malignancies. SL-801 is currently being evaluated in a Phase 1 trial of patients with advanced solid tumors, and a Phase 1 trial in advanced hematologic cancers is planned. Here, we investigated the in vitro effect of combination treatment of SL-401 and SL-801 against cell lines of chronic myeloid leukemia (CML), AML, MM, and Hodgkin's lymphoma (HL). Methods: The human K562 CML cell line, MV4-11 AML cell line, RPMI-8226 MM cell line, and L-428 HL cell line were treated with varying concentrations of SL-401 and SL-801 alone or in combination for 48 hours. Cell viability was assessed by the CellTiter Glo in vitro cytotoxicity assay. Combination index (CI) values were calculated using CompuSyn software by the method of Chou and Talalay, and treatment was considered to be synergistic when CI < 1. Caspase activation was measured using the Caspase-Glo 3/7 assay, and lactate dehydrogenase (LDH) release was measured using the CytoTox 96 Non-Radioactive Cytotoxicity Assay. Results: As single agents, SL-401 and SL-801 demonstrated anti-tumor activity in all four cell lines tested. MV4-11 cells were the most sensitive to both drugs, with an IC50 of 34 pM for SL-401 and 21 nM for SL-801. In the other cell lines, the IC50s for SL-401 were 17 nM in K562 cells, 25 nM in RPMI-8226 cells, and 100 nM in L-428 cells, and the IC50s for SL-801 were 99 nM in K562 cells, 51 nM in RPMI-8226 cells, and 494 nM in L-428 cells. When combined with each other, SL-401 and SL-801 potently inhibited cell growth in all cell lines, and CI calculations indicated that the interaction between the two drugs was synergistic at most dose combinations. Notably, CI values < 0.3 were observed in MV4-11 and L-428 cells, indicative of strong synergy. Consistent with these observations, the combination of SL-401 and SL-801 also induced higher levels of caspase activation and LDH release in MV4-11 and L-428 cells than either drug alone. Conclusion: These findings demonstrate that SL-401 and SL-801, when combined, act synergistically in their in vitro anti-tumor activity against CML, AML, MM, and HL cells. Investigations into the molecular mechanisms underlying the observed synergy are in progress. These promising results provide rationale for further development of SL-401 and SL-801 combination therapy in the treatment of a broad range of hematologic malignancies. Disclosures Gionco: Stemline Therapeutics, Inc.: Employment. Chen:Stemline Therapeutics, Inc.: Employment, Equity Ownership. Lindsay:Stemline Therapeutics, Inc.: Employment, Equity Ownership. Macri:Stemline Therapeutics, Inc.: Employment, Equity Ownership. Brooks:Stemline Therapeutics, Inc.: Employment, Equity Ownership, Patents & Royalties.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1591-1591 ◽  
Author(s):  
Chad C Bjorklund ◽  
Jian Kang ◽  
Ling Lu ◽  
Michael Amatangelo ◽  
Hsiling Chiu ◽  
...  

Abstract Background: CC-220 is a Cereblon (CRBN) binding compound currently under clinical investigation for systemic lupus erythematosus. Comparable to other Cereblon-binding agents, ex vivo treatment of CC-220 on B-cells, T-cells and monocytes leads to the degradation of the hematopoietic transcription factors Ikaros (IKZF1) and Aiolos (IKZF3).(1) Currently, CC-220 is being investigated in a phase Ib/IIa study CC-220-MM-001 (clintrial.gov trial #NCT02773030) as a single agent, or in combination with dexamethasone in relapsed/refractory multiple myeloma (RRMM) in patients who may have previously been exposed to pomalidomide. Here, we provide pre-clinical data and mechanistic rationale for the clinical development of CC-220 in heavily pre-treated RRMM. Results: In order to evaluate the ability of CC-220 effects on MM cells in vitro, we generated a large panel of MM cell lines (~69) that consist of 5 categories, including lenalidomide-sensitive (LS; n=26), intrinsically lenalidomide-resistant (ILR; n=7), acquired lenalidomide-resistant (ALR; n=12), acquired lenalidomide/dexamethasone-dual-resistant (ALDR; n=12), and acquired-pomalidomide-resistant (APR; n=12). Cell proliferation by 3H-thymidine incorporation at concentration between 0.01-100 μM was assessed by the area under the curve (AUC) for both CC-220 and pomalidomide. The average AUC was significantly reduced by 65% vs. 52% (p<0.01) for LS, 33% vs. 20% (p<0.01) for ILR, 30% vs. 20% (p<0.01) for ALR, 25% vs.10% (p<0.01) for ALDR, and 23% vs. 8% (ns) for PR cells for CC-220 vs. pomalidomide respectively. Apoptosis was analyzed by flow cytometry and AnnV+/ToPro3+ staining where CC-220 significantly (p<0.01) induced an average of 36% apoptotic cells compared to 30% for pomalidomide in LS cells, and 18% vs. 6% (p<0.5) in PS cells. Importantly, CC-220 showed anti-proliferative and pro-apoptotic activity in PR cells where Cereblon was still expressed. Additionally, both proliferation inhibition and apoptosis were synergistically enhanced across all cell line categories when CC-220 was used in combination with dexamethasone. We next evaluated the immunmodulatory effects on peripheral blood mononuclear cell (PBMCs)-stimulated killing of MM cells. Following a 72 hr incubation with CD3-stimulated PBMCs, CC-220 significantly induced the death of MM cells (~60%, across all cell type categories) within 4 hr, at concentrations more than 10-fold lower than pomalidomide. The observed CC-220-stimulated PBMC co-culture killing of MM cells closely correlated with dose-dependent increases in IL-2 secretion and Granzyme B release. Notably, CC-220 induced PBMC-mediated death of MM cells lacking observable Cereblon protein expression. Lastly, we evaluated the mechanism of action of CC-220 in MM cells in vitro. In the absence of Cereblon, as shown by shRNA knockdown or downregulation in a subset of PR cells, there is very little if any cell autonomous activity of CC-220, implicating Cereblon-dependency for its effects. Downstream of Cereblon, CC-220 stimulates the complete proteasomal degradation of both Ikaros and Aiolos in as little as 6 hr. Measurement of the half maximal time for 50% degradation of both Ikaros and Aiolos is kinetically faster from 1.9-2.9 vs. 2.4-6.9 hr depending on the MM cell line at a 10-fold lower dose for CC-220 compared to pomalidomide, respectively. CC-220 is also more efficient than pomalidomide at causing downregulation of the c-Myc/IRF4 axis, which has been shown to be essential for the cytotoxic effect of pomalidomide.(2) Conclusions: CC-220 is a potent anti-proliferative and pro-apoptotic compound that shows activity in several MM cell line categories with differing sensitivity to lenalidomide, pomalidomide and dexamethasone. Importantly, CC-220 induces PBMC-mediated killing of all MM cell lines regardless of the level of Cereblon expression and cell autonomous sensitivity. Mechanistically CC-220 acts through binding of Cereblon, leading to the degradation of the hematopoietic transcription factors Ikaros and Aiolos, followed by disruption of the MM promoting c-Myc/IRF4 axis. Taken together, these data support the clinical investigation of CC-220 in relapsed/refractory MM patients,who have previously been exposed to pomalidomide. Disclosures Bjorklund: Celgene Corporation: Employment, Equity Ownership. Kang:Celgene Corporation: Employment, Equity Ownership. Lu:Celgene Corporation: Employment, Equity Ownership. Amatangelo:Celgene: Employment, Equity Ownership. Chiu:Celgene Corporation: Employment, Equity Ownership. Gandhi:Celgene Corporation: Employment, Equity Ownership. Pourdehnad:Celgene Corporation: Employment, Equity Ownership. Klippel:Celgene Corporation: Employment, Equity Ownership. Thakurta:Celgene: Employment, Equity Ownership.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 5125-5125
Author(s):  
Callum M Sloss ◽  
Katie O'Callaghan ◽  
Jutta Deckert ◽  
Jenny Tsui ◽  
Leanne Lanieri ◽  
...  

Abstract Introduction: Relapsed/refractory B-cell NHL remains an area of significant medical need. CD19 is broadly expressed on B-cell malignancies making it an ideal target for antibody-drug conjugate (ADC) based therapy. Coltuximab ravtansine is a CD19-targeting ADC consisting of a CD19-targeting antibody conjugated to the maytansinoid anti-mitotic DM4. In preclinical studies, coltuximab ravtansine has shown potent, targeted activity against NHL cell lines and xenograft models. In early clinical trials, it has been well tolerated and has shown promising signs of efficacy as both a single agent and in combination with rituximab. In the STARLYTE Phase 2 trial coltuximab ravtansine monotherapy resulted in an ORR of 44% in R/R-DLBCL that included an ORR of 21% in hard-to-treat primary refractory patients (NCT01472887). Here we describe studies aimed at the identification of combination partners for coltuximab ravtansine to further optimize clinical benefit to R/R-NHL patients. We are employing a dual approach where we investigate combination of coltuximab ravtansine with multiple, novel targeted therapy partners whilst in parallel also investigating the combination of coltuximab ravtansine with chemotherapies commonly used in the late stage R/R-NHL setting. Methods: Coltuximab ravtansine and the DM4 payload were evaluated in a high throughput screen both as single agents and in combination with a selection of novel, emerging targeted agents across a panel of twenty NHL cell lines. The combinations were evaluated in a dose-response matrix and a statistical method was used to identify combination synergies significantly superseding baseline additivity values. The in vivo efficacy of coltuximab ravtansine was additionally assessed in combination with various clinically relevant chemotherapy agents in subcutaneous xenograft models of NHL. Results: Coltuximab ravtansine and DM4 both showed potent single agent activity against the entire panel of NHL cell lines with median GI50's of 770pM and 100pM, respectively. We observed a significant correlation in the cell line sensitivity of the two compounds suggesting that sensitivity to coltuximab ravtansine is driven, at least in part, by inherent sensitivity of cells to the cytotoxic effects of the DM4 payload. In vitro combination studies for coltuximab ravtansine were performed to identify targets or pathways that result in the most prominent combination effects across the cell line panel. Analysis of the in vitro combination dose-matrix revealed particularly strong synergy between coltuximab ravtansine and various inhibitors of the PI3K/AKT/mTOR axis. Studies to examine the synergism between coltuximab ravtansine and PI3K inhibitors in in vivo models of NHL are ongoing. In order to further determine the utility of coltuximab ravtansine as part of a potential combination regimen for the treatment of R/R-NHL, we assessed the combination of coltuximab ravtansine with the chemotherapy agents bendamustine and gemcitabine in vivo. As gemcitabine is typically used in combination we assessed the efficacy of a coltuximab ravtansine with rituximab and gemcitabine in vivo. In both cases the combination with coltuximab ravtansine was significantly more efficacious than the standard-of-care alone arms. Conclusions: Coltuximab ravtansine demonstrates synergistic activity in combination with multiple PI3K pathway inhibitors across a large panel of NHL cell lines. Additionally, we have shown that combination of coltuximab ravtansine with clinically relevant late stage treatments such as bendamustine and rituximab + gemcitabine is more efficacious than the chemotherapy regimens alone. These results support the continued development of coltuximab ravtansine in R/R-NHL in combination with chemotherapy regimens and suggest that a combination of coltuximab ravtansine with PI3K inhibitors may also be of interest in the clinical setting. Disclosures Sloss: ImmunoGen, Inc.: Employment, Equity Ownership. O'Callaghan:ImmunoGen, Inc.: Employment, Equity Ownership. Deckert:ImmunoGen, Inc.: Employment, Equity Ownership. Tsui:ImmunoGen, Inc.: Employment, Equity Ownership. Lanieri:ImmunoGen, Inc.: Employment, Equity Ownership. Romanelli:ImmunoGen, Inc.: Employment, Equity Ownership.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5234-5234
Author(s):  
Enguerran Mouly ◽  
Emilie Rousseau ◽  
Cecile Planquette ◽  
Remi Delansorne

Abstract Decitabine (DAC) is a hypomethylating agent indicated as front-line therapy for de novo or secondary acute myeloid leukemia (AML) in newly diagnosed patients aged 65 years or older unfit for standard induction chemotherapy (Kantarjian et al., 2012, Malik & Cashen, 2014, Nieto et al., 2016, He et al., 2017). Its mechanism of action at the DNA level mostly results in inhibition of cell proliferation. Cellular differentiation can also be involved in some extent in a fraction of the leukemic cell population, as reported in initial pharmacological studies (Creusot et al., 1982; Pinto et al., 1984). Overall survival advantage is nevertheless limited to several more months and the next challenge is to combine DAC with other drugs to improve it further (Kubasch & Platzbecker, 2018). Inecalcitol (INE: 14epi-,19nor-,23yne-,1,25dihydroxy-cholecalciferol) is a vitamin D receptor agonist characterized by potent anti-proliferative and pro-differentiating general properties on cancer cells and by a low calcemic potential (Okamoto et al., 2012; Ma et al., 2013; Medioni et al. 2014), and especially on AML cell lines (AACR 2017, 2018). INE is currently being tested in combination with DAC in this category of elderly AML patients unfit for standard chemotherapy. The aim of the present report was to look for synergies in vitro between DAC and INE on four non-APL human AML cell lines (MOLM-13, U-937, THP-1, OCI-AML2) both on inhibition of proliferation and induction of differentiation. After 72 hours of incubation, cells were counted and labeled for CD11b and CD14 at the cell surface as biomarkers of monocytic/macrophagic differentiation. The range of DAC concentrations had to adapted to each cell line to avoid maximal cytotoxicity: 1.2 nM to 100 nM on MOLM-13, 3 nM to 250 nM on U-937 and THP-1, and 31 nM to 500 nM on OCI-AML2. The same range of 0.12 to 10 nM INE concentrations was tested on each cell line. Each concentration of INE was tested in combination with each concentration of DAC. Synergy was calculated as the excess over the highest single agent (HSA) using the open source Combenefit software (Di Veroli et al., 2016). The highest concentration of DAC alone (MOLM-13: 100 nM, U-937 and THP-1: 250 nM; OCI-AML2: 500 nM) induced a decrease in cell count of 30% of THP-1 cells, 50% of OCI-AML2 cells, 65% of U-937 cells and 80% of MOLM-13 cells. The highest concentration of INE alone (10 nM) induced a decrease in cell count of 20% of U-937 and THP-1 cells, 60% of OCI-AML2 cells and 70% of MOLM-13 cells. The antiproliferative effects of DAC and INE were at least additive in all combinations tested. Significant HSA synergy indexes were found for the decrease in cell number in all four cell lines, ranging from 12% to 23% depending on cell lines and combinations of concentrations. The highest concentration of DAC alone had no (U-937, THP-1) or limited activity (<+12% of labeled MOLM-13 or OCI-AML2 cells) to induce either CD11b or CD14 on the cell surface. By contrast, the highest concentration of INE alone (10 nM) stimulated the expression of CD11b and CD14 in up to 70% to 95% of the cells depending on the cell line (except the CD14 labeling of U-937 cells which remained < 8%). The respective EC50 of INE for CD11b and CD14 induction was 1 and 3 nM on THP-1 cells, 4 and 3 nM on MOLM-13 cells, 3 and 3 nM on OCI-AML2 cells and 1 nM on U-937 cells (50% not reached for CD14). There was no antagonistic effect of DAC towards the pro-differentiating properties of INE. A significant HSA synergy index in the 16% to 26% range was observed for both CD11b and CD14 in MOLM-13 cells and for CD14 in OCI-AML2 cells. A very high HSA synergy index of 75% was observed for the stimulation of CD14 in U-937 cells. In summary, DAC exerted more antiproliferative activity than INE which was more potent to induce monocytic/macrophagic differentiation of four non-APL human AML cell lines. The combination of DAC and INE systematically resulted in a synergy to inhibit cell proliferation, and the strong stimulation of cell differentiation induced by INE alone was in some cases boosted by DAC. These in vitro results provide the mechanistic basis for the potential interest of treating elderly AML patients with INE in addition to DAC in the ongoing double-blind placebo-controlled Phase II clinical trial (NCT02802267). Disclosures Mouly: Hybrigenics: Employment. Rousseau:Hybrigenics: Employment. Planquette:Hybrigenics: Employment, Equity Ownership, Patents & Royalties: inventor, but no royalties. Delansorne:Hybrigenics: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties: inventor, but no royalties.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3271-3271
Author(s):  
John M. Fidler ◽  
Jinhua An ◽  
John H. Musser ◽  
Duncan H. Mak ◽  
Bing Carter ◽  
...  

Abstract Abstract 3271 Acute Myeloid Leukemia (AML) is the most common form of adult acute leukemia and the second most common childhood leukemia. AML has the lowest survival rate among leukemias, and the frequency is increasing as the population ages. Current therapies are inadequate, and a need exists for better therapeutic agents to treat AML, both as initial treatment for newly diagnosed patients and for those who have failed current therapy and relapsed. Natural products, such as taxol, have shown activities in a variety of disease states, including cancer. Triptolide is a natural product diterpenoid derived from Tripterygium wilfordii Hook f, and has shown anti-cancer activity in a broad range of solid tumors in preclinical models. It induces apoptosis in various leukemic cell lines and primary AML blasts (Carter, B et al, Blood 2006). Derivatives of triptolide with improved pharmacokinetics and bioavailability offer the opportunity to optimize the activity of triptolide for clinical application in AML. MRx102 is a triptolide derivative that is more hydrophobic than triptolide. It has potent in vitro cytotoxic activity with human tumor and leukemia cell lines, an unusual result for triptolide derivatives because they are usually much less active in vitro than the parent compound. Designed as a prodrug, MRx102 exerts cytotoxic activity with human AML cell lines and other human leukemia cell lines without pre-incubation with plasma esterases (IC50 of 51.0 and 37.1 nM with MV4-11 AML cells at 48 and 72 hours, respectively, ∼55% and ∼36% of the activity of triptolide, respectively). MRx102 decreases the viable CD34+ blasts of AML patient samples (a mean of 79.8 ± 8.8% specific apoptosis at 100 nM, n=3), and overcomes the apoptosis protection by co-cultivated stromal cells (with a similar mean of 74.1 ± 8.5%). MRx102 shows dose-dependent anti-tumor activity with the MV4-11 cell line in nude mouse human AML tumor xenografts. After 42 days of MRx102 dosing at 1.35 mg/kg/day i.p., tumor volume was inhibited by 99.7%. Tumors removed from several mice appeared to be Matrigel pellets rather than vascularized tumors, suggesting that many of the tumors were completely eliminated. In studies with the OCI-AML3 human AML cell line xenograft model, the group receiving MRx102 at 1.35 mg/kg/day i.p. showed similar high activity, with mean tumor volume reduced by as much as 99.2% on day 23 compared to the vehicle control group. Tumors of 7 of 10 mice were smaller than the day 0 volumes at the day 28 end of the study. As part of drug development, toxicology testing with MRx102 was initiated with an acute single dose rat toxicology study with no deaths and no adverse signs up to the top dose of 3.0 mg/kg MRx102 in DMSO/PBS administered i.v. The maximum tolerated dose (MTD) is greater than 3 mg/kg of MRx102, and the no observable adverse effect level (NOAEL) is at least 3 mg/kg. A 7-day subacute rat toxicology study of MRx102 showed no deaths and no adverse signs up to the top dose of 1.5 mg/kg/day MRx102 in DMSO/PBS administered daily i.v. for 7 days. The histopatholgy report shows no findings related to administration of the test article. The MRx102 MTD is greater than 1.5 mg/kg/day, and the NOAEL is at least 1.5 mg/kg/day. Previously observed NOAELs for related compounds have been less than 0.1 mg/kg/day. The current studies show potent anti-tumor activity as well as an unusually positive safety profile for MRx102 when compared to triptolide and other triptolide derivatives. Further MRx102 drug development is underway, with the intention of submitting an Investigational New Drug application to the Food and Drug Administration leading to clinical evaluation of MRx102 in AML patients. Updated results on current drug development activities will be presented at the meeting. This work is supported in part by NCI SBIR Contract HHSN261200900061C to MyeloRx LLC. Disclosures: Fidler: MyeloRx LLC: Employment, Equity Ownership, PI for an NCI Contract to MyeloRx LLC, Patents & Royalties. An:MyeloRx LLC: Employment, Equity Ownership, participant in research under an NCI SBIR Contract to MyeloRx LLC. Musser:MyeloRx LLC: Employment, Equity Ownership, Patents & Royalties, participant in research under an NCI SBIR Contract to MyeloRx LLC. Mak:MyeloRx LLC: participant in research under an NCI SBIR Contract to MyeloRx LLC. Carter:MyeloRx LLC: participant in research under an NCI SBIR Contract to MyeloRx LLC. Andreeff:MyeloRx LLC: Consultancy, participant in research under an NCI SBIR Contract to MyeloRx LLC.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 5028-5028 ◽  
Author(s):  
Deepak Sampath ◽  
Elizabeth Punnoose ◽  
Erwin R. Boghaert ◽  
Lisa Belmont ◽  
Jun Chen ◽  
...  

Abstract Abstract 5028 Multiple myeloma (MM) is a hematological malignancy of the bone marrow caused by the dysregulated proliferation of monoclonal antibody producing plasma cells. A hallmark feature of cancer is the ability to evade cell death signals induced by stress response cues. The Bcl-2 family of proteins regulates the intrinsic apoptosis pathways and consists of pro-apoptotic (Bax, Bak, Bad, Bim, Noxa, Puma) and pro-survival (Bcl-2, Bcl-xL, Mcl-1); the balance of which dictates the life or death status of MM tumor cells. Thus, there is a strong rationale to target members of the Bcl-2 proteins for the treatment of MM. ABT-199 is a potent BH3-only mimetic that selectively antagonizes Bcl-2 and is currently in phase I clinical trials for the treatment of hematological malignancies. Therefore, we evaluated the efficacy of ABT-199 as a single agent and in combination with standard of care drugs such as Velcade (bortezomib) in preclinical models of MM. A panel of 21 human MM cell lines was evaluated in vitro for to sensitivity to ABT-199. ABT-199 potently inhibited cell viability in a sub-set of MM cell lines (7/21) with EC50 values less than 1 μM. Expression of Bcl-2, Bcl-xL, Mcl-1, Bim and other Bcl-2 family proteins were evaluated by protein and mRNA. Cell line modeling identified thresholds for expression of Bcl-2, Bcl-xL and Mcl-1 that best predicted sensitivity and resistance to ABT-199 and the dual Bcl-2/Bcl-xL antagonist, navitoclax. Consistent with the target inhibition profile of these drugs, we found that MM lines that were Bcl-2high/Bcl-xLlow/Mcl-1low are the most sensitive to ABT-199 treatment. Whereas cell lines that are Bcl-xLhigh remain sensitive to navitoclax but not ABT-199. MM cell lines that are Mcl-1high are less sensitive to both ABT-199 and navitoclax, suggesting that Mcl-1 is a resistance factor to both drugs. Utilizing a novel Mesoscale Discovery based immunoassay we determined that levels of Bcl-2/Bim complexes also correlated with sensitivity of ABT-199 in the MM cell lines tested. In addition, the t(11;14) status in these cell lines associated with sensitivity to ABT-199. The clinical relevance of the Bcl-2 pro-survival expression pattern in MM cell lines, was determined by a collection of bone marrow biopsies and aspirates (n=27) from MM patients by immunohistochemistry for prevalence of Bcl-2 and Bcl-xL. Similar to our in vitro observations, the majority (75%) of the MM bone marrow biopsies and aspirates had high Bcl-2 levels whereas 50% had high Bcl-xL expression. Therefore, a subset of patient samples (33%) were identified with a favorable biomarker profile (Bcl-2high/Bcl-xLlow) that may predict ABT-199 single agent activity. ABT-199 synergized with bortezomib in decreasing cell viability in the majority of MM cell lines tested in vitro based on the Bliss model of independence analyses (Bliss score range = 10 to 40). However the window of combination activity was reduced due to high degree of sensitivity to bortezomib alone. Therefore, the combination efficacy of ABT-199 and bortezomib was further evaluated in vivo in MM xenograft models that expressed high levels of Bcl-2 protein (OPM-2, KMS-11, RPMI-8226, H929 and MM. 1s). Bortezomib treatment alone at a maximum tolerated dose resulted in tumor regressions or stasis in all xenograft models tested. ABT-199 at a maximum tolerated dose was moderately efficacious (defined by tumor growth delay) as a single agent in xenograft models that expressed high protein levels of Bcl-2 but relatively lower levels of Bcl-xL. However, the combination of ABT-199 with bortezomib significantly increased the overall response rate and durability of anti-tumor activity when compared to bortezomib, resulting in increased cell death in vivo. Treatment with bortezomib increased levels of the pro-apoptotic BH3-only protein, Noxa, in MM xenograft models that expressed high levels of Mcl-1. Given that the induction of Noxa by bortezomib results in neutralization of Mcl-1 pro-survival activity in MM models [Gomez-Bougie et al; Cancer Res. 67:5418–24 (2007)], greater efficacy may be achieved when Bcl-2 is antagonized by ABT-199 thereby inhibiting pro-survival activity occurring through either Bcl-2 or Mcl-1 and increasing cell death. Thus, our preclinical data support the clinical evaluation of ABT-199 in combination with bortezomib in MM patients in which relative expression of the Bcl-2 pro-survival proteins may serve as predictive biomarkers of drug activity. Disclosures: Sampath: Genentech: Employment, Equity Ownership. Punnoose:Genentech: Employment, Equity Ownership. Boghaert:Abbott Pharmaceuticals: Employment, Equity Ownership. Belmont:Genentech: Employment, Equity Ownership. Chen:Abbott Pharmaceuticals: Employment, Equity Ownership. Peale:Genentech: Employment, Equity Ownership. Tan:Genentech: Employment, Equity Ownership. Darbonne:Genentech: Employment, Equity Ownership. Yue:Genentech: Employment, Equity Ownership. Oeh:Genentech: Employment, Equity Ownership. Lee:Genentech: Employment, Equity Ownership. Fairbrother:Genentech: Employment, Equity Ownership. Souers:Abbott Pharmaceuticals: Employment, Equity Ownership. Elmore:Abbott Pharmaceuticals: Employment, Equity Ownership. Leverson:Abbott Pharmaceuticals: Employment, Equity Ownership.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5672-5672 ◽  
Author(s):  
Shilpi Arora ◽  
Kaylyn Williamson ◽  
Shruti Apte ◽  
Srividya Balachander ◽  
Jennifer Busby ◽  
...  

Abstract Post-translational modifications of the histone proteins play a key role in regulating processes that require access to DNA. Specifically, methylation of lysine 27 on histone 3 (H3K27) is intimately linked with transcriptional repression. EZH2, a histone lysine methyl transferase is the catalytic component of the PRC2 complex, which catalyzes H3K27 methylation. EZH2 dysregulation has been observed in different malignancies and inhibition of its catalytic activity has emerged as a novel therapeutic approach to treat human cancers. Potent, selective and reversible EZH2 small molecule inhibitors are currently being tested in Ph. 1 clinical trials. We and others have reported EZH2 dependencies across non-Hodgkin Lymphoma subtypes in cancer cell lines, in xenograft mouse models and in lymphoma patients. We identified Multiple Myeloma as potential clinical application for EZH2 inhibitors. Treatment with EZH2 inhibitors such as CPI-360, CPI-169 and CPI-1205 cause apoptosis in multiple myeloma and plasmacytoma cell models and causes tumor growth inhibition in myeloma xenograft models at well tolerated doses. An EZH2-controlled transcriptional signature across various multiple myeloma was identified using integrated RNA-sequencing and ChIP-sequencing data. Combination studies testing EZH2 inhibitors with standard of care (SOC) agents across a panel of multiple myeloma cell lines showed synergistic responses with several of the SOC agents in vitro and in vivo. Disclosures Arora: Constellation Pharmaceuticals: Employment, Equity Ownership. Williamson:Constellation Pharmaceuticals: Employment, Equity Ownership. Apte:Constellation Pharmaceuticals: Employment, Equity Ownership. Balachander:Constellation Pharmaceuticals: Employment, Equity Ownership. Busby:Constellation Pharmaceuticals: Employment, Equity Ownership. Hatton:Constellation Pharmaceuticals: Employment, Equity Ownership. Bryant:Constellation Pharmaceuticals: Employment, Equity Ownership. Trojer:Constellation Pharmaceuticals: Employment, Equity Ownership.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4500-4500 ◽  
Author(s):  
Janice Chen ◽  
Vince Macri ◽  
Pedro Herrera ◽  
Christopher Brooks ◽  
Eric Rowinsky

Abstract While Hodgkin’s lymphoma (HL) is among the most curable lymphomas, a significant percentage of patients relapse after frontline therapy or have primary refractory disease. Patients that remain resistant after second or third line chemotherapy or autologous stem cell transplantation (ASCT) have very limited treatment options. Non-Hodgkin’s lymphoma (NHL) comprises a wide array of clinical subtypes, which have indolent to aggressive clinical courses. Multiple lines of chemotherapy and ASCT are part of the NHL treatment strategy, but indolent forms frequently recur, and patients can develop resistance to therapies that were previously effective. The prognosis for patients with HL and NHL who fail to achieve durable remission with approved therapeutics or transplantation is poor. Therefore, new treatment strategies for such patients are desperately needed. The interleukin-3 receptor (IL-3R) alpha chain (CD123) is overexpressed on the tumor bulk and cancer stem cells (CSCs) of multiple hematologic malignancies. In particular, CD123 has been shown to be upregulated on a variety of leukemias and lymphomas, including HL and certain NHLs. We previously showed that SL-401, a novel IL-3R-targeted therapy comprised of IL-3 fused to a truncated diphtheria toxin payload, possesses cytotoxic activity against IL-3R-expressing HL and NHL cells. SL-501 is a next-generation IL-3R targeted therapy with increased binding affinity for the IL-3R and enhanced potency against both tumor bulk and CSCs of acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). Here, the anti-tumor activity of SL-501 against HL and NHL cells was investigated. Our flow cytometry assessment of CD123 showed that the receptor was expressed on two nodular sclerosing HL cell lines (L-428 and HDLM2), one mixed cellularity HL line (L-1236), and two mantle cell lymphoma lines (Mino and JeKo-1). CD123 was expressed to varying extents, ranging from high expression in HDLM-2 (99.5%) and L-428 (89.1%), to moderate-to-low expression in Mino (25.4%), L-1236 (19.5%) and JeKo-1 (2.9%). In this study, the activity of SL-501 was tested against this panel of cell lines. Cell were treated with SL-501 (range: 6.3 pM – 1.5 mM) for 48 hours and then assessed for viability using the CellTiter Glo® in vitro cytotoxicity assay. We found that SL-501 reduced the viability of all cell lines tested in a dose-dependent fashion. In particular, SL-501 showed very high potency against the HDLM2 and L-1236 lines, with IC50 values in the sub-nanomolar range (0.139 nM and 0.191 nM, respectively). SL-501 was also cytotoxic against L-428, JeKo-1, and Mino cell lines, with IC50s of 91 nM, 97 nM, and 116 nM, respectively. Taken together, these findings demonstrate that SL-501, a novel next-generation IL-3R-targeted therapeutic, possesses potent in vitro anti-cancer activity against a variety of HL and NHL cell lines. Additional functional studies are ongoing. These promising results provide a rationale for further development of SL-501 in HL and NHL. Disclosures Chen: Stemline Therapeutics: Employment, Equity Ownership. Macri:Stemline Therapeutics: Employment, Equity Ownership. Herrera:Stemline Therapeutics: Employment. Brooks:Stemline Therapeutics: Employment, Equity Ownership. Rowinsky:Stemline Therapeutics: Consultancy, Employment, Equity Ownership.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3918-3918 ◽  
Author(s):  
Carsten Riether ◽  
Tanja Chiorazzo ◽  
Amy J. Johnson ◽  
Christina Diane Drenberg ◽  
Khaja Waheeduddin Syed ◽  
...  

Introduction Acute myeloid leukemia (AML) is a very heterogeneous hematological malignancy characterized by the accumulation of myeloid blasts. Treatment options for unfit AML patients greater than 65 year of age are still limited and outcomes are dismal. The current standard of care for older AML patients are hypomethylating agents (HMA) or low dose Ara-C. However, even though inducing hematological remissions in up to 30 percent of the patients, responses are not durable and survival of these patients is only marginally prolonged. The poor durability is due to insufficient action on leukemia stem cells (LSC) which drive and maintain the disease and are resistance to therapy (Craddock et al, 2013 and DiNardo et al, 2019). We described how aberrant CD70/CD27 signaling drives stemness of AML LSCs and identified CD70 as potential new target for the treatment of AML patients (Riether et al, 2017). In a recent Phase 1 clinical trial, treatment of older and unfit AML patients with the ADCC-enhanced humanized monoclonal anti CD70 antibody (mAb) cusatuzumab in combination with HMA demonstrated promising clinical activity and a favorable tolerability profile. The BCL-2 antagonist, venetoclax, targets and eliminates LSCs by suppression of oxidative phosphorylation and demonstrated very promising activity in older AML patients in clinical phase I and II studies in combination with standard of care (Pollyea et al, 2018). However, even with novel agents such as venetoclax, there are still patients that become refractory or relapse. We hypothesized that combining venetoclax and cusatuzumab with distinct but complementary mechanisms of action could successfully eliminate LSCs. Experimental design To test this hypothesis, we performed a drug-combination study according to the Chou-Talalay method (Chou 2010) in CD70-expressing AML cell lines such as MOLM-13, MV4-11, and NOMO-1 cells in vitro. In addition, we tested the effect of the cusatuzumab/venetoclax and the cusatuzumab/venetoclax/HMA combination on colony formation and re-plating capacity of primary CD34+CD38- LSCs from newly diagnosed AML patients. Results We first treated MOLM-13, MV4-11, and NOMO-1 AML cells with vehicle, cusatuzumab alone or in combination with venetoclax or decitabine in a constant ratio in the presence of CFSE-labeled NK cells (ratio 1:1). AML cell numbers were assessed 72 hours later. Cusatuzumab in combination with venetoclax or decitabine and NK cells synergistically eliminated CD70-expressing AML cells in a broad dose range (Figure 1). To assess the effect of the cusatuzumab/venetoclax combination on primary human AML LSCs, we treated CD34+ CD38- LSCs with cusatuzumab or venetoclax monotherapy or in combination in the presence of NK cells and assessed colony formation. Cusatuzumab/venetoclax co-treatment was more efficacious than each monotherapy alone and strongly reduced LSCs and leukemia progenitors (Figure 2). To analyze the effect of the cusatuzumab/venetoclax treatment on LSC function in a more stringent way, we performed serial re-plating experiments in vitro. The impaired colony formation after combination treatment observed after the first plating was maintained during subsequent the re-plating, even though cusatuzumab and venetoclax were not present in the re-plating, indicating an effective reduction of LSCs. Mechanistically, we could show that treatment with venetoclax results in up-regulation of CD70 on LSCs, suggesting that venetoclax renders LSCs more susceptible to cytolytic killing with cusatuzumab. In older AML patients, cusatuzumab and venetoclax each have demonstrated promising clinical activity in combination with HMA. We determined whether addition of HMA to the cusatuzumab/venetoclax co-treatment could more effectively eliminate LSCs. The triplet combination cusatuzumab/venetoclax/decitabine did not further reduce growth of AML cell lines in vitro (Figure 1) nor colony and re-plating capacity of human LSCs compared to the cusatuzumab/venetoclax co-treatment. Conclusions Overall, these results indicate that a combination of cusatuzumab with venetoclax eliminates LSCs synergistically and more efficiently than as a monotherapy. Tolerability and efficacy will be tested in mouse models using both primary AML and cell line xenografts. The results suggest that targeting LSCs by combining venetoclax and cusatuzumab treatments is a promising novel treatment strategy in AML. Disclosures Johnson: Janssen R&D: Employment. Drenberg:Janssen R&D: Employment. Syed:Janssen R&D: Employment. Moshir:Argenx: Employment, Equity Ownership. Hultberg:Argenx: Employment. Leupin:Argenx: Employment, Equity Ownership, Patents & Royalties. De Haard:Argenx: Employment, Equity Ownership, Patents & Royalties.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4547-4547
Author(s):  
Nathan Thomas Schomer ◽  
Laurent Boissel ◽  
Karen Jiang ◽  
Hans Klingemann ◽  
John H. Lee ◽  
...  

Abstract Background Despite some robust initial responses, anti-CD19 Chimeric Antigen Receptor (CAR) T-cell therapy can be associated with significant short-term (cytokine release syndrome) and long-term (B-cell deficiency) toxicities. CAR-engineered natural killer (NK) cells potentially provide a safer alternative while maintaining efficacy. Activated Natural Killer (aNKTM) cells are a clinical grade cell line derived from the NK-92R cell line that has demonstrated potent cytotoxicity towards a broad spectrum of malignant cell lines as well as safety and efficacy in phase I trials. Variants of the aNKcell line are currently in Phase I/II clinical trials: a CAR-expressing aNK cell line and the haNKTM cell line, which have been engineered to carry a high-affinity version of the CD16/FcγRIII receptor to allow for combination therapy with monoclonal antibodies. haNK cells have also been genetically modified to express an endoplasmic reticulum-retained version of IL-2 (ERIL-2), which provides IL-2 independence and limits IL-2 secretion to sub-physiological, safe levels. A key factor for the efficacy of cellular immunotherapies against a given target is biodistribution, which affects the local effector to target ratio. Inability to reach the tumor cells, either by lack of homing or by the accumulation of extracellular matrix (ECM) surrounding a tumor, can be responsible for the clinical failure of even the most effective CAR. The chemokines CCL19 and CCL21 drive recruitment of CCR7-expressing immune cells to secondary lymphoid organs. Engineering aNK cells to express the CCR7 receptor is likely to improve their efficacy by increasing their targeted migration to lymphoma tumor sites. Methods and Results Clinical grade aNK cells were electroporated with a non-viral vector containing the CCR7 receptor, an anti-CD19 CAR, and a high affinity CD16 receptor. To assay the migration of these engineered cell lines, a modified Boyden Chamber assay was performed using Matrigel coated Transwells. K562 cells or modified K562 cells engineered to express CCL19 (K-19) were placed in the destination chamber and CFSE-stained effector cells were placed in the top well. After 24 hours, cells in the bottom well were analyzed by flow cytometry to measure the number of effectors which had migrated through the Matrigel (Fig 1a). The excellent activity of the CAR in stably transfected cells was confirmed against SUP-B15 cells (aNK-resistant), while the ADCC activity was tested against a SUP-B15 variant expressing CD20, but engineered to lack the CD19 antigen (Sup-B15 CD19-, CD20+). Migration towards human lymph node chemokine CCL19 was also tested in vivo in NSG mice with bilateral subcutaneous tumors - with parental K562 in one flank and K-19 tumors on the contralateral flank. CFSE-stained effector cells were delivered via tail vein injection once average tumor size reached 100mm3 and following randomization. Tumors were then harvested at multiple time points, dissociated, and the number of infiltrating effectors in each tumor compared by flow cytometric analysis. (Fig 1b). In testing, monoclonal cell lines expressing all components of the polycistronic system displayed preferential migration towards CCR7 chemokines both in vitro and in vivo, as well as robust cytotoxicity vs. K562 (92.4% +/- 2.4% at 5:1 E:T), Sup-B15(97% +/- 0.6% at 5:1 E:T), and Sup-B15(CD19-, CD20+) when pre-incubated with Rituximab(83.2% +/- 2.8% at 5:1 E:T) but not with control antibody Trastuzumab (22.3% +/- 1.1% at 5:1 E:T) in standard cytotoxicity and ADCC assays. Conclusion We show here that the incorporation of a CCR7 receptor into an off the shelf CAR engineered NK cell line improves their homing towards lymph node chemokines both in vitro and in vivo. This improved homing should result in a greater ratio of effector to target in lymphoid tissue, and maximize the immunogenic cell death. Disclosures Schomer: NantKwest, Inc.: Employment, Equity Ownership. Boissel:NantKwest, Inc.: Employment, Equity Ownership. Jiang:NantKwest, Inc.: Employment, Equity Ownership. Klingemann:NantKwest, INc.: Employment, Equity Ownership, Patents & Royalties. Lee:NantKwest, Inc.: Employment, Equity Ownership. Soon-Shiong:NantKwest, Inc.: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4486-4486
Author(s):  
Silvia L Locatelli ◽  
Silvia Tartari ◽  
Luca Castagna ◽  
Rita Mazza ◽  
Srikant Viswanadha ◽  
...  

Abstract INTRODUCTION: The phosphatidylinositol 3-kinase (PI3K) pathway is consistently activated in relapsed/refractory Hodgkin lymphoma (HL), suggesting that TGR-1202, a novel inhibitor of the δ isoform of PI3K (PI3K-δ) in clinical development for a variety of hematologic malignancies, might represent an attractive therapeutic option. The anti-CD30 monoclonal antibody, Brentuximab Vedotin (BV), a conjugate of Brentuximab and the microtubule-disrupting agent, monomethyl auristatin E (MMAE), induced a 75% objective response rate with limited duration of response in relapsed/refractory HL. Combination therapies aimed at enhancing the anti-tumor activity of BV may have the potential for significant clinical impact in the treatment of relapsed/refractory HL. Therefore, the present study was aimed at investigating the activity and mechanism(s) of action of the PI3K-δ inhibitor TGR-1202 in combination with BV. METHODS: Three HL cell lines, including L-540, KM-H2 and L-428, were used to investigate in vitro cell growth and cell survival. The activity of TGR-1202 and BV, each as single agents and in combination, on tubulin polymerisation and microtubule distribution across cell membrane was investigated by means of a tubulin polymerisation assay and a three-dimensional volume rendering technique. The efficacy of TGR-1202/BV in combination was finally analyzed in NOD/SCID mice with HL cell line xenografts. RESULTS: As compared to single agents, exposure of L-540, KM-H2, and L-428 cell lines to the TGR-1202 (10 µM) and BV (10 ng/ml) combination resulted in a synergistic inhibition of mean (±SEM) cell growth (TGR-1202: 40 ± 4%; BV: 30 ± 2%; TGR-1202/BV: 85 ± 1%, P ≤.0001) and a marked increase of cells in G2/M phase (TGR-1202/BV: 72 ± 3%). This finding was paralleled by a 3-fold reduction of cells in S phase (TGR-1202: 25 ± 1%; BV: 23 ± 1%; TGR-1202/BV: 9 ± 1%) and a marked Cyclin B1 and p21 overexpression. Upon TGR-1202/BV exposure, HL cell lines showed a 3-fold increase in apoptosis over that observed with single agents (TGR-1202: 27 ± 2%; BV: 27 ± 2%; TGR-1202/BV: 75 ± 2%, P ≤.0001). Activation of caspase-8, -9, -3, and cleavage of PARP were reversed by the pan-caspase inhibitor Z-VADfmk, supporting a caspase-dependent apoptosis. Analysis of α-tubulin by immunofluorescence showed a synergistic microtubule disruption induced by TGR-1202/BV treatment with a strong α-tubulin inhibition (40%, P ≤.0001) and a low diffuse staining with irregular microtubule fragments throughout the cytosol. In addition, TGR-1202/BV in combination strongly inhibited tubulin polymerization in a time-dependent manner, suggesting that TGR-1202/BV treatment abrogates microtubule assembly and disrupts microtubules. In NOD/SCID mice bearing human HL xenografts, TGR-1202 (150 mg/Kg) and BV (0.5 mg/Kg) combined treatment significantly reduced the growth of L-540 and L-428 nodules, resulting in an average 50% tumor growth inhibition (P ≤.0001) compared to single agent treatments. No systemic toxicity was observed in mice receiving the combination therapy. Interestingly, a significant increase of microtubule disruption resulting in a marked tumor necrosis (5-fold increase, P ≤.0001) detected in mice receiving TGR-1202/BV combination as compared to mice receiving single agents. Finally, TGR-1202/BV was found to interfere with the mitotic spindle integrity, which may suggest that the cytotoxicity of the combined TGR-1202/BV treatment primarily arises from the inhibition of tubulin polymerization. CONCLUSIONS: The novel PI3K-δ inhibitor TGR-1202 synergistically enhances the anti-tumor activity of BV by increasing drug-induced cell death and tubulin disruption in HL cell line xenografts. These data provide a strong rationale for clinical studies using TGR-1202/BV in combination in refractory/relapsed HL patients. A Phase I study of the combination of TGR-1202 and BV is ongoing in patients with relapsed/refractory HL. Disclosures Viswanadha: Incozen: Employment. Sportelli:TG Therapeutics: Employment, Equity Ownership. Vakkalanka:Rhizen: Employment, Equity Ownership.


Sign in / Sign up

Export Citation Format

Share Document