Itraconazole, an Oral Antifungal Drug, Is Active in Chemotherapy Resistant B-Cell Non-Hodgkin Lymphoma and Enhances the Anti-Tumor Activity of Chemotherapy Agents

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5138-5138
Author(s):  
Juan J Gu ◽  
Lianjuan Yang ◽  
Cory Mavis ◽  
Matthew J. Barth ◽  
Francisco J. Hernandez-Ilizaliturri

Abstract Background: Relapsed/refractory diffuse large B-cell lymphoma (DLBCL) patients previously treated with rituximab-based therapy have poor clinical outcome, according to the results from collaborative trial in relapsed aggressive lymphoma (CORAL) study. It stresses the need to identify and/or optimize novel targeted agents. To better understand the molecular mechanisms underlining the acquired resistance to rituximab, we generated and characterized several rituximab-resistant DLBCL cell lines (RRCLs). Itraconazole, an oral antifungal agent, was reported had novel anticancer activity in basal cell carcinoma, non-small cell lung cancer and prostate cancer. In our current work, we define and characterize the anticancer activity of itraconazole in preclinical rituximab-sensitive or -resistant lymphoma models. Methods: A panel of rituximab-sensitive (RSCL) and rituximab-resistant (RRCL) cell lines were exposed to escalating doses of itraconazole (0-20μM) for 24, 48 and 72h. Changes in cell viability and cell cycle distribution were evaluated using the Presto Blue assay and flow cytometry respectively. IC50 was calculated by Graphpad Prism6 software. Loss of mitochondrial membrane potential (∆ψm) following itraconazole exposure was assessed by DiOC6 and flow cytometry. Subsequently lymphoma cells were exposed to itraconazole or vehicle and various chemotherapy agents such as doxorubicin (1µM), dexamethasone (1µM), cDDP (20μg/ml), bortezomib (20nM), carfilzomib (20nM) or MLN2238 (20nM) for 48 hours. Coefficient of synergy was calculated using the CalcuSyn software. Changes in hexokinase II (HKII), Voltage dependent anion channel protein (VDAC), LC3 and BCL-xL expression levels were determined by western blotting after exposure cells to itraconazole. VDAC-HKII interactions following in vitro exposure to itraconazole were determined by immunoprecipitation of VDAC and probing for HKII in RSCL and RRCLs. Result:Itraconazole consistently showed potent, specific, dose-and time- dependent inhibition of all our sensitive and resistant lymphoma cell lines. In vitro exposure cells to itraconazole resulted in a loss of mitochondrial membrane potential and caused G2 cell cycle arrest. Itraconazole significantly had a synergistic anti-tumor effect combined with various chemotherapeutic agents, including doxorubicin, dexamethasone, cisplatin and different generations of proteasome inhibitors (bortezomib, carfilzomib or ixazomib) in both RSCL and RRCL. Western blot and immunoprecipitation studies demonstrated that following exposure to itraconazole, HKII bound less to mitochondrial specific protein VDAC. Complete silencing of HKII (using HKII siRNA interference) resulted in a rescue of loss in the mitochondrial membrane potential induced by intraconazole. Conclusion: Taking together, our data suggest that itraconazole had a potent anti-tumor activity against rituximab-sensitive or resistant pre-clinical models. The disruption of HKII from mitochondria following itraconazole exposure may contribute to lower the mitochondrial membrane potential and enhance the chemotherapeutic efficacy. Our finding highlights itraconazole as a potential therapeutic agent in the treatment of B-cell malignancies, and strongly supports clinical translation of its use. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5378-5378
Author(s):  
Juan J Gu ◽  
Matthew J. Barth ◽  
Qunling Zhang ◽  
Cory Mavis ◽  
Francisco J. Hernandez-Ilizaliturri

Abstract Background: Results from thecollaborative trial in relapsed aggressive lymphoma (CORAL) study demonstrated a poor clinical among patients treated with second-line chemo-immunotherapy in the post-rituximab era, stressing the need to identify and/or optimize novel targeted agents. C-myc expression was found correlate with a poor clinical outcome in patients with newly diagnosed or relapsed/refractory DLBCL. Previously, we found that JQ1 overcomes rituximab-chemotherapy resistance in lymphoma pre-clinical models. JQ1 exhibited synergistic activity when combined with chemotherapy agents. We also demonstrated that hexokinase II was highly expressed in rituximab resistant cell lines (RRCL), and its expression was associated with a deregulation in the glucose metabolism and an increase in the apoptotic threshold leading to chemotherapy resistance. In our current work, we evaluated molecular studies dissecting the cellular pathways affected by JQ1. Methods: A panel of rituximab-sensitive (RSCL) and RRCL cell lines were exposed to escalating doses of JQ1 (0-8μM) for 24, 48 and 72h. Changes in cell viability and cell cycle distribution were evaluated using the Presto Blue assay and flow cytometry respectively. IC50 was calculated by Graphpad Prism 6 software. Loss of mitochondrial membrane potential (∆ψm) following JQ1 exposure was assessed by DiOC6 staining. Changes in c-MYC, HKII, HKI, Voltage dependent anion channel protein (VDAC) and p21 expression levels were determined by western blotting. HKII was silencing using siRNA interference in RRCL (Raji-4RH) and changes in HKII, HKI, VDAC, c-MYC and p21 protein expression was determined. HKII knockdown or scramble Raji-4RH cells were exposed to different chemotherapy agents and JQ1; cell viability and mitochondrial membrane potential was accessed. Result:JQ1 induced a dose-and time- dependent cell death in cell lines. In vitro exposure cells to JQ1 resulted in a loss of mitochondrial potential and induced G1 cell cycle arrest. In vitro exposure to JQ1 decreased c-MYC and HKII expression levels and induced of p21 expression. Complete silencing of HKII re-sensitized cell to chemotherapy (doxorubicin, vincristine and bortezomib). On the other hand, HKII knockout abrogated JQ1 anti-tumor activity. Conclusion: Our data suggests that JQ1 had anti-tumor activity against rituximab-sensitive or resistant pre-clinical models. The inhibition of HKII following JQ1 exposure may contribute to lower the mitochondrial membrane potential and enhance the chemotherapeutic effect. Our finding highlights a better understanding in the molecular events triggered by JQ1 as a potential role in the treatment of B-cell malignancies. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2522-2522 ◽  
Author(s):  
Nishitha Reddy ◽  
Raymond Cruz ◽  
Francisco Hernandez-Ilizaliturri ◽  
Joy Knight ◽  
Myron S. Czuczman

Abstract Background: Lenalidomide is a potent thalidomide analogue shown to activate both the innate and adoptive immune system, inhibit angiogenesis, and modify the tumor microenvironment. While lenalidomide has received approval by the U.S. Federal Drug Administration (FDA) for the treatment of various hematological conditions, ongoing clinical trials are addressing its role in the treatment of B-cell lymphomas. There is a dire need to develop novel well-tolerated, therapies which combine various target-specific agents such as lenalidomide and monoclonal antibodies (mAbs). We previously demonstrated that lenalidomide is capable of expanding natural killer (NK) cells in a human-lymphoma-bearing SCID mouse model and improve rituximab anti-tumor activity in vivo. Methods: In our current work we studied the effects of lenalidomide on the biological activity of a panel of mAbs against various B-cell lymphomas, utilizing various rituximab-sensitive (RSCL) and rituximab-resistant cell lines (RRCL) generated in our laboratory from Raji and RL cell lines. Functional assays including antibody-dependant cellular cytotoxicity (ADCC) and complement-mediated cytotoxicity (CMC) were performed to demonstrate changes in sensitivity to rituximab. RSCL and RRCL (1′105 cells/well) were exposed to either lenalidomide (5 μg/ml) or vehicle with or without mAb at a final concentration of 10μg/ml. The mAb panel consisted of two anti-CD20 mAbs: rituximab (Biogen IDEC, Inc.) and hA20, a humanized anti-CD20 mAb (Immunomedics, Inc.); an anti-CD80 mAb (galixumab, Biogen IDEC Inc.), and an anti-CD52 antibody (Alemtuzumab, Berlex Inc.). Changes in DNA synthesis and cell proliferation were determined at 24 and 48 hrs by [3H]-thymidine uptake. For ADCC/CMC studies, NHL cells were exposed to lenalidomide or vehicle for 24 hrs and then labeled with 51Cr prior to treatment with one of various mAbs (10 mg/ml) and peripheral blood mononuclear cells (Effector: Target ratio, 40:1) or human serum, respectively. 51Cr-release was measured and the percentage of lysis was calculated. Changes in antigen (CD20, CD80, and CD52) expression following in vitro exposure to lenalidomide were studied by multicolor flow cytometric analysis. Results: Concomitant in vitro exposure of various RSCL and RRCL cells to lenalidomide and either galixumab, hA20 or alemtuzumab for 24 hrs resulted in improved anti-tumor activity when compared to controls. In addition, pre-incubation of both RSCL and RRCL with lenalidomide rendered cells more susceptible to alemtuzumab-, hA20- and galixumab-mediated ADCC and CMC. No antigen modulation (i.e., upregulation) was observed following in vitro exposure of lenalidomide to NHL cell lines, suggesting an alternative mechanism involved in the improvement antitumor activity observed. Conclusions: Our data suggest that the augmented antitumor effect of lenalidomide is not limited to its combination with rituximab, but also that it augments the antiproliferative and biological activity of alemtuzumab, hA20 and galixumab. Furthermore, these interactions are observed even in our RRCL. Future studies will be directed towards evaluating whether similar activity will be seen in vivo using a human lymphoma-bearing SCID mouse model. (Supported by USPHS grant PO1-CA103985 from the National Cancer Institute.)


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4141-4141
Author(s):  
Savita Bhalla ◽  
Leo I. Gordon

Introduction: CLL is characterized by abnormal proliferation and accumulation of mature CD5 positive B-lymphocytes in blood, bone marrow, spleen and lymph nodes. Outcome and survival is determined in part by the presence of 11q deletions and17p deletion/TP53 mutation with complex karyotype. Sirtuins are NAD+ dependent ADP-ribosyl transferases with evolutionary conserved function in cellular metabolism and chromatin regulation. Seven sirtuins (SIRT1-SIRT7) have been identified in mammals at distinct subcellular locations and targeting different substrates. SIRT1, 2, 6, and 7 are primarily found in the nucleus, SIRT2 in the cytoplasm and SIRT3, 4, 5 in the mitochondria. Sirtuins are associated with cancer as they deacetylate cancer associated transcription factors, and SIRT1 is overexpressed in acute myeloid leukemia, colon and prostate cancers. Several studies reported SIRT2 as a tumor suppressor as it is down regulated in human gliomas. SIRT1 and SIRT6 are reported to be significantly increased in CLL. We hypothesized that sirtuins play an important role in the development and maintenance of CLL and might therefore be a target. Methods: We measured SIRT 1 and 2 expression in fresh primary CLL cells, in the B-cell pro-lymphocytic cell lines JVM-3 and MEC-2 and by data-mining of the Oncomine microarray gene expression datasets. Oncomine is a bioinformatics initiative that collects, standardizes, analyzes, and delivers cancer transcriptome data to the biomedical research community. We then inhibited SIRT activity in primary CLL cells and cell lines by pharmacologic inhibitors EX-529 and sirtinol, and by knock down using shRNA in cell lines and then measured cell viability, apoptosis, reactive oxygen species formation and mitochondrial membrane potential. To determine the metabolic contribution to SIRT activity, we studied the effect of SIRT inhibition under conditions of nutrient deprivation. Results: We observed an increase in SIRT1mRNA expression in CLL by data mining of the independent microarray dataset in the Oncomine database, with a total of 2022 leukemia samples and 74 normal controls (Figure1). SIRT1was significantly up regulated in CLL compared with normal PBMC as well as other leukemia types. We found that SIRT inhibitors EX-527 and sirtinol impair cell growth (IC50 50-100 microM for EX-527 and 10-20 microM for sirtinol), cause apoptosis (>2-fold increase in apoptosis in cell lines JVM-3 and MEC-2), induce ROS production (up to 90% increase in mean fluorescence intensity (MFI) with EX-527 and sirtinol), loss of mitochondrial membrane potential, (MFI from 4 to <1 after treatment with SIRT inhibitors) and increase alpha-tubulin acetylation in primary CLL cells and cell lines. Using shRNA knock down of SIRT1 and SIRT2 in JVM-3 and MEC-2 cell lines, we showed that expression of both proteins is crucial for the survival of these cells. Furthermore, studies in nutrient deprived conditions suggest a role of SIRT in metabolism in CLL. Conclusion: These findings suggest that CLL cells are characterized by increased expression and function of SIRT1 and SIRT2, both directly inhibited by SIRT inhibitors. SIRT1 and SIRT2 inhibition using specific inhibitors could be a novel therapeutic approach for the treatment of CLL and other SIRT expressing hematologic malignancies. Figure 1. Figure 1. Disclosures Gordon: Northwestern University: Employment; Dr Leo I. Gordon: Patents & Royalties: Patent for gold nanoparticles pending.


2020 ◽  
Vol 20 (5) ◽  
pp. 599-611
Author(s):  
Thoukhir B. Shaik ◽  
M. Shaheer Malik ◽  
Sunitha R. Routhu ◽  
Zaki S. Seddigi ◽  
Ismail I. Althagafi ◽  
...  

Background: Cancer is one of the major health and social-economic problems despite considerable progress in its early diagnosis and treatment. Owing to the emergence and increase of multidrug resistance to various conventional drugs, and the continuing importance of health-care expenditure, many researchers have focused on developing novel and effective anticancer compounds. Objective: Chemical repositories provide a good platform to evaluate and exploit known chemical entities for the identification of other biological activities. In the present study, we have selected an in-house library of synthesized compounds based on two different pharmacophoric scaffolds to evaluate their cytotoxic potency on various cancer cell lines and mechanisms of action. Methods: A series of in-house synthesized quinazoline and quinazolino-benzothiadiazine derivatives were investigated for their anticancer efficacy against a panel of five cancer (DU145, MCF7, HepG2, SKOV3 and MDA-MB-231) and one normal (MRC5) cell lines. Furthermore, the active compound of the study was investigated to elucidate the mechanism of cytotoxicity by performing series of experiments such as cell cycle analysis, inhibition of tubulin polymerization, alteration of mitochondrial membrane potential, determination of endocytic pathway for drug uptake pathway and combination drug treatment. Results: Among all the tested compounds, fifteen of them exhibited promising growth-inhibitory effect (0.15- 5.0μM) and induced cell cycle arrest in the G2/M phase. In addition, the selected compounds inhibited the microtubule assembly; altered mitochondrial membrane potential and enhanced the levels of caspase-9 in MCF-7 cells. Furthermore, the active compound with a combination of drugs showed a synergistic effect at lower concentrations, and the drug uptake was mediated through clathrin-mediated endocytic pathway. Conclusion: Our results indicated that quinazoline and quinazolino-benzothiadiazine conjugates could serve as potential leads in the development of new anticancer agents.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3734-3734
Author(s):  
Cory Mavis ◽  
Sarah Frys ◽  
Juan Gu ◽  
John Gibbs ◽  
Myron S. Czuczman ◽  
...  

Abstract Abstract 3734 Deacetylases (DACs) are enzymes that remove the acetyl groups from target proteins [histones (class I) and non-histone proteins (class II)], leading to regulation of gene transcription and other cellular processes. Entinostat (MS-275) is a novel and potent DAC class I inhibitor undergoing pre-clinical and clinical testing. In order to better characterize the role of DAC inhibitors in the treatment of refractory/resistant (r/r) B-cell lymphoma, we studied the anti-tumor activity of entinostat as a single agent or in combination with the proteasome inhibitor bortezomib (BTZ) against a panel of rituximab-[chemotherapy]-sensitive cell lines (RSCL), rituximab-[chemotherapy]-resistant cell lines (RRCL), and primary lymphoma cells isolated from patients with treatment-naïve or r/r B-cell lymphoma. In addition, we characterized the mechanisms responsible for entinostat's anti-tumor activity. Non-Hodgkin lymphoma (NHL) cell lines were exposed to escalating doses of entinostat (0.1 to 20uM) +/− BTZ (1–10nM). Changes in mitochondrial potential and ATP synthesis were determined by alamar blue reduction and cell titer glo luminescent assays, respectively. Changes in cell cycle were determined by flow cytometric analysis. Subsequently, protein lysates were isolated from entinostat +/− BTZ exposed cells and changes in members of Bcl-2 and cell cycle family proteins were evaluated by Western blotting. Finally, to characterize entinostat's mechanisms-of-action, lymphoma cells were exposed to entinostat with or without pan-caspase (Q-VD-OPh, 5mM) and changes in cell viability were detected. Entinostat exhibited dose-dependent activity as a single agent against RSCL, RRCL and patient-derived primary tumor cells (N=32). In addition, in vitro exposure of lymphoma cells to entinostat resulted in an increase in G1 and a decrease in S phase. Moreover synergistic activity was observed by combining entinostat with BTZ in vitro. The pharmacological interactions between entinostat and proteasome inhibitor could be explained in part by each agent's effects on the expression levels of cell cycle proteins. In vitro exposure of lymphoma cells to entinostat resulted in p21 upregulation and p53 down-regulation, whereas BTZ exposure lead to up-regulation of Bak and Noxa and downregulation of Mcl-1 and Bcl-XL. Caspase inhibition diminished entinostat anti-tumor activity in RSCL but not in RRCL. Together this data suggests that entinostat has a dual mechanism-of-action and can induce cell death by caspase-dependent and independent pathways. Our data suggests that entinostat as a single agent is active against rituximab-chemotherapy sensitive and resistant lymphoma cells and potentiates the anti-tumor activity of BTZ. A better understanding in the molecular events (caspase-dependent and -independent) triggered by entinostat in combination with proteasome inhibition is important in order to develop optimal combination strategies using these novel agents in future clinical trials. Disclosures: Czuczman: Millennium: Honoraria, Research Funding. Hernandez-Ilizaliturri:Genmab: Research Funding; Amgen: Research Funding; Celgene: Consultancy.


2021 ◽  
Author(s):  
Rula Amara ◽  
Nidal Zeineh ◽  
Sheelu Monga ◽  
Abraham Weisman ◽  
Moshe Gavish

Abstract The mitochondrial translocator protein (TSPO) is a modulator of the apoptotic pathway involving reactive oxygen species (ROS) generation, mitochondrial membrane potential (Δψm) collapse, activation of caspases and eventually initiation of the apoptotic process. In this in vitro study, H1299 lung cells and BV-2 microglial cells were exposed to the hypoxic effect of CoCl2 with or without PK 11195. Exposing the H1299 cells to 0.5 mM CoCl2 for 24 hours resulted in decreases in cell viability (63%, p<0.05), elevation of cardiolipin peroxidation levels (38%, p<0.05), mitochondrial membrane potential depolarization (13%, p<0.001), and apoptotic cell death (117%, p<0.05). Pretreatment with PK 11195 (25 µM) exhibited significant protective capacity on CoCl2-induced alterations in the mentioned processes. Exposure of BV-2 cells to increasing concentrations of CoCl2 (0.3, 0.5, 0.7 mM) for 4 hours resulted in alterations in the same cellular processes. These alterations were obtained in a dose-dependent manner, except the changes in caspases 3 and 9. The novel ligands as well as PK 1195 attenuated the in vitro hypoxic effects of CoCl2.It appears that the TSPO ligand PK 11195 can prevent CoCl2-induced cellular damage in both non-neuronal and brain cell lines, and they may offer new therapeutic options in hypoxia-related lung and brain diseases which fail to respond to conventional therapies.


2020 ◽  
Vol 21 (15) ◽  
pp. 1654-1665
Author(s):  
Mohamad F.A. Kadir ◽  
Shatrah Othman ◽  
Kavitha Nellore

Background: The re-emerging of targeting Dihydroorotate Dehydrogenase (DHODH) in cancer treatment particularly Acute Myelogenous Leukemia (AML) has corroborated the substantial role of DHODH in cancer and received the attention of many pharmaceutical industries. Objective: The effects of Brequinar Sodium (BQR) and 4SC-101 on lymphoblastoid cell lines were investigated. Methods: DHODH expression and cell proliferation inhibition of lymphoblastoid and lymphoma cell lines were analyzed using Western blot analysis and XTT assay, respectively. JC-1 probe and ATP biochemiluminescence kit were used to evaluate the mitochondrial membrane potential and ATP generation in these cell lines. Furthermore, we explored the cell cycle progression using Muse™ Cell Cycle Kit. Results: Ramos, SUDHL-1 and RPMI-1788 cells are fast-growing cells with equal expression of DHODH enzyme and sensitivity to DHODH inhibitors that showed that the inhibition of DHODH was not cancer-specific. In ATP depletion assay, the non-cancerous RPMI-1788 cells showed only a minor ATP reduction compared to Ramos and SUDHL-1 (cancer) cells. In the mechanistic impact of DHODH inhibitors on non-cancerous vs cancerous cells, the mitochondrial membrane potential assay revealed that significant depolarization and cytochrome c release occurred with DHODH inhibitors treatment in Ramos but not in the RPMI-1788 cells, indicating a different mechanism of proliferation inhibition in normal cells. Conclusion: The findings of this study provide evidence that DHODH inhibitors perturb the proliferation of non-cancerous cells via a distinct mechanism compared to cancerous cells. These results may lead to strategies for overcoming the impact on non-cancerous cells during treatment with DHODH inhibitors, leading to a better therapeutic window in patients.


2003 ◽  
Vol 22 (11) ◽  
pp. 607-615 ◽  
Author(s):  
Christina E Schwab ◽  
Helga Tuschl

The aim of the present study was to investigate in vitrothe mechanism of toxicity of isoniazid (-INH), the drug most widely used for treatment of tuberculosis. The human hepatoma line HepG2, the human lymphoblastoid line AHH-1 and the murine lymphoma cells YAC-1 were used as test systems. Active cell death (-apoptosis) and necrosis were detected by different flow cytometric methods: the binding of annexin V to the cell membrane and staining with propidium iodide (PI), the TUNEL assay for detection of DNA fragmentation and the occurrence of a sub G1 peak in cell cycle histograms. Mitochondrial membrane potential was analysed with the fluorescent probe JC-1. In addition to cytotoxicity, effects of INH on cell cycle were studied in HepG2 cells. The data of the present investigations indicate that INH induces cytotoxicity via apoptosis both in hepatoma and lymphoma cells. Twenty-four hours of application of INH in concentrations -26 mM led to a remarkable number of apoptotic cells positive for Annexin V. The induction of apoptosis was accompanied by a break down of the mitochondrial membrane potential and the occurrence of DNA strand breaks. At incubation times from 36 to 48 hours, a sub-G1 peak of late apoptotic cells was detected in cell cycle analysis. Furthermore, cell cycle studies showed a disruption of the cycle at low concentrations of INH which are only mildly cytotoxic. Thus the present study unequivocally demonstrated that INH induces cytotoxicity via apoptosis and can lead to a significant disturbance of the cell cycle in mammalian cells.


2018 ◽  
Vol 19 (12) ◽  
pp. 3939 ◽  
Author(s):  
Jaroslaw Szczepaniak ◽  
Barbara Strojny ◽  
Ewa Sawosz Chwalibog ◽  
Slawomir Jaworski ◽  
Joanna Jagiello ◽  
...  

Graphene (GN) and its derivatives (rGOs) show anticancer properties in glioblastoma multiforme (GBM) cells in vitro and in tumors in vivo. We compared the anti-tumor effects of rGOs with different oxygen contents with those of GN, and determined the characteristics of rGOs useful in anti-glioblastoma therapy using the U87 glioblastoma line. GN/ExF, rGO/Term, rGO/ATS, and rGO/TUD were structurally analysed via transmission electron microscopy, Raman spectroscopy, FTIR, and AFM. Zeta potential, oxygen content, and electrical resistance were determined. We analyzed the viability, metabolic activity, apoptosis, mitochondrial membrane potential, and cell cycle. Caspase- and mitochondrial-dependent apoptotic pathways were investigated by analyzing gene expression. rGO/TUD induced the greatest decrease in the metabolic activity of U87 cells. rGO/Term induced the highest level of apoptosis compared with that induced by GN/ExF. rGO/ATS induced a greater decrease in mitochondrial membrane potential than GN/ExF. No significant changes were observed in the cytometric study of the cell cycle. The effectiveness of these graphene derivatives was related to the presence of oxygen-containing functional groups and electron clouds. Their cytotoxicity mechanism may involve electron clouds, which are smaller in rGOs, decreasing their cytotoxic effect. Overall, cytotoxic activity involved depolarization of the mitochondrial membrane potential and the induction of apoptosis in U87 glioblastoma cells.


Sign in / Sign up

Export Citation Format

Share Document