scholarly journals Blastic Plasmacytoid Dendritic Cell Neoplasm (BPDCN) Harbors Frequent Splicesosome Mutations That Cause Aberrant RNA Splicing Affecting Genes Critical in pDC Differentiation and Function

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 738-738 ◽  
Author(s):  
Katsuhiro Togami ◽  
Vikas Madan ◽  
Jia Li ◽  
Alexandra-Chloe Villani ◽  
Siranush Sarkizova ◽  
...  

Abstract Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an aggressive malignancy thought to result from transformation of plasmacytoid dendritic cells (pDCs). Clinical outcomes are poor and pathogenesis is unclear. To better understand BPDCN genomics and disease mechanisms, we performed whole exome- (12 BPDCNs), targeted DNA- (additional 12 BPDCNs), bulk whole transcriptome RNA- (12 BPDCNs and 6 BPDCN patient-derived xenografts [PDXs]), and single cell RNA-sequencing (scRNA-seq) compared to normal DCs. We observed RNA splicing factor mutations in 16/24 cases (7 ZRSR2, 6 SRSF2, 1 each SF3B1, U2AF1, SF3A2, SF3B4). Additional recurrent alterations were in genes known to be mutated in other blood cancers: TET2, ASXL1, TP53, GNB1, NRAS, IDH2, ETV6, DNMT3A, and RUNX1. From exome sequencing we also discovered recurrent mutations in CRIPAK (6/12 cases), NEFH (4/12), HNF1A (2/12), PAX3 (2/12), and SSC5D (2/12) that may be unique to BPDCN. ZRSR2 is notable among the recurrently mutated splicing factors in hematologic malignancies in that all mutations are loss-of-function (e.g., nonsense, frameshift). Of note, BPDCN is very male predominant, ZRSR2 is located on chrX and all mutations are in males. ZRSR2 plays a critical role in "minor" or U12-type intron splicing (only 0.3% of all introns). Thus, we hypothesized that mis-splicing, possibly of U12 genes, contributes to BPDCN pathogenesis. Using RNA-seq, we measured aberrant splicing in BPDCN. Intron retention was the most frequent abnormality in ZRSR2 mutant BPDCNs and PDXs compared to non-mutant cases. ZRSR2 mutant intron retention predominantly affected U12 introns (patients: 29.4% of retained introns, P<0.0001; PDX: 94%, P<0.0001). To test if ZRSR2 loss directly causes U12 intron retention in otherwise isogenic cells, we performed ZRSR2 knockdown using doxycycline-inducible shRNAs in the BPDCN cell line, CAL1, which has no known splicing factor mutation. RNA-seq was performed 0, 2, and 7 days after addition of doxycycline in 3 independent clones each of control or ZRSR2 knockdown. Consistent with what we observed in primary BPDCN, intron retention events were higher in ZRSR2 compared to control shRNA cells after 7 days of doxycycline (mean 885.7 vs 122.7 events, P=0.041). Aberrant intron retention after ZRSR2 knockdown largely involved U12 introns (30/732 U12 vs 37/207,344 U2 introns, P<0.0001). SRSF2 and SF3B1 mutations in BPDCN were at hotspots seen in other cancers: SRSF2 P95H/L/R and SF3B1 K666N, mutants that induce specific types of aberrant splicing (Kim, Ca Cell 2015; Darman, Cell Rep 2015). Mutant BPDCNs demonstrated the same aberrations: SRSF2, exon inclusion/exclusion based on CCNG/GGNG exonic splicing enhancer motifs; SF3B1, aberrant 3' splice site recognition. We hypothesized that aberrant splicing may affect RNAs important for pDC development or function. To further define genes uniquely important in BPDCN, we performed scRNA-seq on 4 BPDCNs and on DCs from healthy donors. By principal component analysis, BPDCNs were more similar to pDCs than to conventional DCs (cDCs) or other HLA-DR+ cells. However, several critical genes for pDC function had markedly lower expression in BPDCN including the transcription factors IRF4 and IRF7. Next we determined which genes were commonly mis-spliced in splicing factor mutant BPDCNs. Strikingly, this list included genes already known to be important in driving DC biology or identified in our scRNA-seq as being differentially expressed between BPDCN and healthy pDCs, including IRF7, IRF8, IKZF1, FLT3, and DERL3. To determine if splicing factor mutations affect DC function, we stimulated ZRSR2 knockdown or control CAL1 cells with Toll-like receptor (TLR) 7, 8, and 9 agonists (R848 or CpG oligo). ZRSR2 knockdown inhibited upregulation of the CD80 costimulatory molecule and aggregation of CAL1 cells, suggesting impairment in activation. Using mouse conditional knock-in bone marrow in ex vivo multipotent progenitor assays, DC differentiation induced by FLT3 ligand was biased toward pDCs and away from cDCs in SRSF2 P95H mutant compared to wild-type cells. However, cDC and monocyte differentiation in the presence of GM-CSF was not affected. In conclusion, splicing factors are frequently mutated in BPDCN and lead to specific splicing defects. Splicing factor mutations may promote BPDCN by affecting pathways important in DC maturation or activation, which could contribute to transformation. Disclosures Seiler: H3 Biomedicine: Employment. Buonamici:H3 Biomedicine: Employment. Lane:Stemline Therapeutics: Research Funding; N-of-1: Consultancy.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3797-3797
Author(s):  
Amanda L Christie ◽  
Yvonne Li ◽  
Katsuhiro Togami ◽  
Mahmoud Ghandi ◽  
Alexandra N. Christodoulou ◽  
...  

Abstract Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an aggressive acute leukemia/lymphoma recently classified as a malignant transformation of plasmacytoid dendritic cells (pDCs) and a subtype of acute myeloid leukemia (AML). BPDCN has no standard treatment and a poor prognosis, with median survival <1 year. A significant roadblock to better understanding BPDCN is a lack of adequate model systems. We generated patient-derived xenografts (PDX) of BPDCN in NOD/Scid/IL2rgnull (NSG) mice. Bone marrow or peripheral blood cells involved by BPDCN blasts (CD45 low, CD123 high, HLA-DR high, CD3 neg) were transplanted into irradiated NSG recipients. Nine of 16 BPDCNs caused lethal leukemia involving blood, spleen, and bone marrow 2-6 months after transplantation. All nine BPDCN PDXs were serially transplantable. Flow characterization of each patient's BPDCN and corresponding xenograft revealed no major differences in BDCA2, BDCA4, FCeR1, ILT7, or cytoplasmic TCL1 staining. All samples maintained high expression of the human interleukin-3 (IL3) receptor (IL3Ralpha/CD123), a hallmark feature of BPDCN. To further characterize BPDCN pathogenesis we performed whole transcriptome sequencing (RNA-seq) on sorted blasts from 11 patients and on normal pDCs isolated from 4 healthy donors. These were compared to RNA-seq in six PDXs. The spectrum of mutations in BPDCN transcriptomes overlapped with that seen in other hematologic malignancies, particularly myeloid disorders, and was similar to reported DNA mutations in BPDCN, including in ASXL1, CTCF, IDH2, NRAS, RUNX1, STAG2, TET2, and TP53. Particularly striking was the presence of a canonical mutation in an RNA splicing factor in 7 of 11 cases (SRSF2 P95H/L/R in four, ZRSR2 R295* and gene locus deletion in two, and SF3B1 K666N in one). Known oncogenic mutations in the original disease were retained in the PDXs, including all splicing factor mutations, with the exception of an IDH2 R140Q that was lost in one PDX. BPDCN PDXs grouped together in unsupervised clustering of expression profiles, distinct from AML and ALL PDXs in an analysis of 134 models from the DFCI Public Repository of Xenografts (http://PRoXe.org). Gene set enrichment analysis (GSEA) of KEGG and REACTOME pathways associated with differentially expressed genes between primary BPDCNs and non-malignant pDCs revealed signatures related to dendritic cell activation, cell cycle, and apoptosis. In addition, 3 of the top 11 sets were genes involved in mRNA processing, mRNA splicing, and processing capped intron-containing pre-mRNAs (all FDR<1e-6). To test the efficacy of BPDCN-targeted therapy using primary human leukemias in vivo, we performed a pre-clinical trial in NSG mice using SL-401, a recombinant biologic consisting of a fusion protein of IL3 and diphtheria toxin. Three independent BPDCN xenografts were injected into 20 NSG mice each, and followed by weekly peripheral blood monitoring for human CD45 and CD123. When leukemia burden reached >0.5% in at least half of the mice in the cohort, animals were randomized to receive SL-401 at 100 ug/kg or vehicle intraperitoneally daily for 5 days. Two mice in each group were sacrificed at day 7 for response assessment, and peripheral blood was followed weekly in the remaining mice for evidence of progression (>5% human CD45/CD123-positive cells). 7 days after treatment, mice receiving SL-401 had dramatic reductions in BPDCN in the peripheral blood, spleen, and bone marrow (0.31% vs 37.6% in marrow of SL-401 vs vehicle). SL-401 prolonged progression-free survival in all BPDCNs tested (12 vs 48 days, P<0.0001 by log-rank test). At the time of progression after SL-401, relapsing mice were re-randomized to receive a 2nd and in some cases 3rd cycle of SL-401 or vehicle. Repeated treatment in mice that progressed after SL-401 resulted in second and third peripheral blood remissions. All PDXs responded to SL-401 including those with and without splicing factor and TP53 mutations. CD123 expression was maintained at high levels on all SL-401 treated BPDCNs even after repeated cycles. Primary xenografts of BPDCN are faithful models of the human disease, maintain genetic and transcriptomic characteristics of the original tumor, and respond to multiple courses of IL3-DT in vivo, suggesting that they provide a valuable resource to study disease biology and response/resistance to targeted therapy. Disclosures Chen: Stemline Therapeutics, Inc.: Employment. Brooks:Stemline Therapeutics, Inc.: Employment, Equity Ownership, Patents & Royalties. Lane:Stemline Therapeutics, Inc.: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 882-882
Author(s):  
Akihide Yoshimi ◽  
Zhaoqi Liu ◽  
Wang Jiguang ◽  
Hana Cho ◽  
Stanley C Lee ◽  
...  

Abstract Mutations in the RNA splicing factor SF3B1 are recurrent in CLL and myeloid neoplasms but their functional role in promoting tumorigenesis remain poorly understood. While SF3B1 mutations have been identified as promoting use of aberrant 3' splice sites (3'ss), consistent identification of mis-spliced transcripts and pathways that functionally link mutant SF3B1 to transformation remains elusive. Moreover, large-scale analyses of the impact of mutant SF3B1 on gene expression and gene regulatory networks, which may be distinct from aberrant splicing changes, remain to be performed. We therefore sought to elucidate the effects of SF3B1 mutations across hematopoietic malignancies and cancer lineages at the level of both mRNA splicing and expression. To this end, we collected RNA-seq data from 79 tumors and 12 isogenic cell lines harboring SF3B1 hotspot mutations. The most frequent hotspot, K700E, was the most common mutation in CLL and breast cancers while mutations at position R625 were restricted to melanomas (Figure A, B). Regulatory network analysis of differentially expressed genes in SF3B1 mutated CLL identified MYC as the top master regulator (Figure C). MYC activation in SF3B1 mutated CLL was also verified by differential expression analyses (Figure D) and was common to SF3B1K700E mutant cancers while absent in cancers with mutations affecting R625. Taken together, these observations suggested that tumors harboring SF3B1K700E mutations activate the MYC transcriptional program. We next sought to verify the effects of c-Myc activation by mutant Sf3b1 in the B-cell lineage in vivo. We crossed Cd19-cre Sf3b1K700E/+ mice with Eμ-Myc transgenic mice to generate Cd19-cre+ control, Sf3b1K700E/+, Eμ-MycTg/+, and Sf3b1K700E/+Eμ-MycTg/+ double-mutant mice. While control or single mutant primary mice did not develop disease over one year, double-mutant mice developed a lethal B-cell malignancy. This effect was consistent in serial transplantation, where mice transplanted with double-mutant cells had shorter survival compared to single-mutant controls (Figure E). These data provide the first evidence that SF3B1 mutations contribute to tumorigenesis in vivo. To understand the molecular mechanism for MYC activation across SF3B1 mutant human and mouse cells, we analyzed RNA-seq data from CLL patients, isogenic Nalm-6 cells, and splenic B-cells from the mouse models. This revealed a significant overlap in aberrant (3'ss) events across SF3B1 mutant samples. Interestingly, mis-spliced events across mouse and human SF3B1K700E mutant samples identified aberrant 3'ss usage and decay of PPP2R5A (Figure F), a gene whose product has previously been shown to regulate c-MYC protein stability and the only gene whose aberrant splicing was most prominent in K700E compared with R625 mutant SF3B1. PPP2R5A is a subunit of the PP2A phosphatase complex that dephosphorylates Serine 62 (S62) of c-MYC, resulting in an unstable form of c-MYC that is a substrate for proteasomal degradation. Consistent with this, SF3B1K700E mutant cells exhibited dramatic increase in S62-phosphorylated c-MYC and increased stability of c-MYC protein. MYC expression, stability, and S62 phosphorylation could be abrogated in SF3B1 mutant cells by restoring PPP25RA expression. In addition to c-MYC S62 phosphorylation, PPP2R5A-containing PP2A reduced S70 phosphorylation of BCL2 (a modification important for apoptosis induction) in SF3B1 mutant cells. To functionally evaluate the importance of impaired PP2A enzymatic activity in SF3B1 mutant cells further, we assessed the therapeutic potential of the FDA-approved oral PP2A activator, FTY-720. SF3B1 mutant cells were more sensitive to FTY-720 treatment than SF3B1 WT counterparts, experiencing growth arrest at lower concentration (Figure G). Moreover, both S62-phosphorylated c-MYC and S70-phosphorylated BCL2 decreased in a dose-dependent manner upon treatment with FTY-720 (Figure H). Here through combined evaluation of the effects of the SF3B1 mutation on splicing, gene expression, and transcriptional networks across cancer types, we identify a novel mechanism by which mutant SF3B1-mediated alterations in RNA splicing contribute to activation of oncogenic MYC through effects on MYC proteolysis. Moreover, these data highlight a novel therapeutic approach targeting the impact of mutant SF3B1 on post-translational modification of MYC. Figure. Figure. Disclosures Mato: Janssen: Consultancy, Honoraria; Celgene: Consultancy; Prime Oncology: Speakers Bureau; TG Therapeutics: Research Funding; Regeneron: Research Funding; Abbvie: Consultancy; Sunesis: Honoraria, Research Funding; Acerta: Research Funding; AstraZeneca: Consultancy; Pharmacyclics: Consultancy, Honoraria, Research Funding.


2020 ◽  
Author(s):  
Katsuhiro Togami ◽  
Sun Sook Chung ◽  
Vikas Madan ◽  
Christopher M. Kenyon ◽  
Lucia Cabal-Hierro ◽  
...  

ABSTRACTBlastic plasmacytoid dendritic cell neoplasm (BPDCN) is an aggressive leukemia of plasmacytoid dendritic cells (pDCs). BPDCN occurs at least three times more frequently in men than women, but the reasons for this sex bias are unknown. Here, studying genomics of primary BPDCN and modeling disease-associated mutations, we link acquired alterations in RNA splicing to abnormal pDC development and inflammatory response through Toll-like receptors. Loss-of-function mutations in ZRSR2, an X chromosome gene encoding a splicing factor, are enriched in BPDCN and nearly all mutations occur in males. ZRSR2 mutation impairs pDC activation and apoptosis after inflammatory stimuli, associated with intron retention and inability to upregulate the transcription factor IRF7. In vivo, BPDCN-associated mutations promote pDC expansion and signatures of decreased activation. These data support a model in which male-biased mutations in hematopoietic progenitors alter pDC function and confer protection from apoptosis, which may impair immunity and predispose to leukemic transformation.STATEMENT OF SIGNIFICANCESex bias in cancer is well recognized but the underlying mechanisms are incompletely defined. We connect X chromosome mutations in ZRSR2 to an extremely male-predominant leukemia. Aberrant RNA splicing induced by ZRSR2 mutation impairs dendritic cell inflammatory signaling, interferon production, and apoptosis, revealing a sex- and lineage-related tumor suppressor pathway.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3073-3073
Author(s):  
Courtney Hershberger ◽  
James Hiznay ◽  
Rosemary Dietrich ◽  
Xiaorong Gu ◽  
Cassandra M. Hirsch ◽  
...  

Abstract Myelodysplastic syndromes (MDS) are unique among cancers because of the frequent occurrence of somatic mutations impacting spliceosome machinery. At least 65% of MDS patients harbor a mutation in one of several splicing factors including U2AF1, SF3B1 and SRSF2. Whole exome sequencing of MDS bone marrow uncovered somatic frameshift mutations in LUC7L2, the mammalian ortholog of a yeast splicing factor. LUC7L2 is located in the most commonly deleted region of chromosome 7. Deletions and frameshifts lead to haploinsufficient expression and therefore it can be approximated that a combined 14% of MDS patients have low expression of LUC7L2. Restoring expression of LUC7L2 in del(7q)-iPSCs partially rescues the differentiation of iPSCs into CD45+ myeloid progenitors. Although perhaps partly due to associated losses of other genes on chromosome 7, low expression of LUC7L2 correlates with a poorer patient prognosis, so its haploinsufficiency may play an important role in bone marrow failure. While U2AF1, SF3B1, and SRSF2 are well-characterized splicing factors, the function of LUC7L2 in pre-mRNA splicing is unexamined and its role in the MDS pathogenesis is undefined. We hypothesize that low expression of LUC7L2 results in the aberrant splicing of oncogenes and tumor suppressor gene transcripts thus reducing expression or altering function and contributing to the pathogenesis of MDS. We have characterized LUC7L2 as an alternative splicing regulatory protein that plays a repressive role in the regulation of alternative RNA splicing. We generated HEK-293 cells overexpressing V5-tagged LUC7L2 for immunoprecipitation-mass spectrometry, to ascertain protein interactions with LUC7L2. LUC7L2 co-immunoprecipitated with splicing regulators which are involved in splice site recognition. We performed cross-linking-IP-high-throughput-sequencing (CLIP-seq) to identify LUC7L2 binding sites on RNA. We identified 301 LUC7L2 RNA-binding sites as well as binding sites on U1 and U2 which is common for splicing regulatory proteins. Metagene analysis of these binding sites showed that LUC7L2 bound near splice sites in exonic sequences. We knocked down LUC7L2 expression in HEK293 and K562 cells to phenocopy the frameshifts and deletions observed in MDS patients. We used a PCR-based assay to measure the splicing efficiency of introns near LUC7L2-binding sites. Knockdown of LUC7L2 increased the splicing efficiency of 8/13 selected introns; this suggests that LUC7L2 represses selective splice site usage. We also performed RNA-seq to characterize global mis-splicing events. Analysis of RNA transcripts revealed a multitude of splicing changes, including enhanced exclusion of alternative introns. Knockdown LUC7L2 cells exhibited-altered expression of other splicing factors; this could have further contributed to the vast number of splicing changes observed. To identify specific splicing changes that could contribute to the pathogenesis of MDS, we compared the splicing profiles of LUC7L2-knockdown in K562 cells with RNA-seq data from K562 cells expressing U2AF1S34F, SRSF2P95H or SF3B1K700E. This analysis yielded several exon-skipping splicing patterns in cancer-relevant transcripts, such as oncogene PRC1, splicing factor PTBP1 and MRPL33. Additionally, we noticed commonly mis-spliced transcripts among the four datasets in which the missplicing events occurred in the functional domain, potentially conferring a functional change. Surprisingly, we observed missplicing of U2AF1 in LUC7L2-knockdown, SRSF2P95H, and SF3B1K700E K562 cells, which altered the length of the RNA-recognition UHM domain by inclusion of a mutually exclusive exon or retention of an intron. In this way, low expression of LUC7L2, or point mutants U2AF1S34F, SRSF2P95H, and SF3B1K700E,could alter U2AF1 function as a distal convergence point. In summary, we identified a novel splicing factor implicated in the pathogenesis of MDS. We characterized LUC7L2 as a splicing repressor and discovered many splicing changes caused by low expression of LUC7L2. Several genes were also mis-spliced in U2AF1S34F, SRSF2P95H and SF3B1K700E K562 cells targeting these for further study. Commonly mis-spliced targets such as U2AF1 may indicate that some of the novel therapeutics may have spliceosome mutation agnostic effects. If this applies to the LUC7L2 mutations, then they may also be effective in del7/del7q cases. Disclosures Carraway: Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; FibroGen: Consultancy; Jazz: Speakers Bureau; Novartis: Speakers Bureau; Amgen: Membership on an entity's Board of Directors or advisory committees; Balaxa: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Agios: Consultancy, Speakers Bureau. Sekeres:Opsona: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Opsona: Membership on an entity's Board of Directors or advisory committees. Saunthararajah:Novo Nordisk, A/S: Patents & Royalties; EpiDestiny, LLC: Patents & Royalties. Maciejewski:Alexion Pharmaceuticals, Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Alexion Pharmaceuticals, Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Apellis Pharmaceuticals: Consultancy; Ra Pharmaceuticals, Inc: Consultancy; Apellis Pharmaceuticals: Consultancy; Ra Pharmaceuticals, Inc: Consultancy.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 741-741 ◽  
Author(s):  
Justin Taylor ◽  
Sunhee S. Kim ◽  
Kristen E. Stevenson ◽  
Akinori Yoda ◽  
Nadja Kopp ◽  
...  

Abstract Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an aggressive malignancy previously known as blastic natural killer cell lymphoma, CD4+CD56+ hematodermic neoplasm, or agranular CD4+ NK cell leukemia. BPDCN has recently been classified as the malignant counterpart of plasmacytoid dendritic cells (pDCs), the most common dendritic cell subset in peripheral blood. Clinical outcomes in BPDCN are poor, with median survival of less than 12 months. The pathogenesis and genetic changes associated with pDC transformation are largely unknown, and the optimal treatment for this disease is unclear. Loss of the CDKN2A locus on 9p21 is the most common copy number alteration, and the sole targeted sequencing effort reported to date focused only on somatic mutations in TP53 and TET2 (Jardin et al. Br J Haem 2011). The goal of this study was to characterize the genetics of BPDCN by next-generation sequencing of all exons of 219 genes known to be recurrently mutated in hematologic malignancies. We sequenced a discovery cohort of seven adult patients with BPDCN, and confirmed the somatic status of single nucleotide variants (SNVs) and insertion-deletions (InDels) not present in dbSNP using paired germline tissue where available. All cases met World Health Organization criteria for pathological diagnosis of BPDCN. We confirmed the presence of TET2 (4 of 7 patients) and TP53 (1 of 7) mutations in BPDCN, and noted that the overall mutational spectrum was overlapping with previously sequenced hematologic neoplasms. Specifically, we observed mutations in ASXL1 (in 2 patients: K586* and an InDel causing a frameshift at S795), IDH2 (R140Q), KRAS (G13D), ABL1 (T315I), ARID1A (R1721*), GNA13 (E313*), U2AF1 (Q157L), and SRSF2 (P95L) that have been reported in myeloid and mature B cell neoplasms. Also of interest was an IRF8 R404W mutation; IRF8 is a transcription factor that drives pDC development and germline loss of IRF8 in humans is associated with dendritic cell deficiency. The most striking finding was the presence of premature stop, frame shift, and splice site mutations in the splicing factor ZRSR2 on chromosome Xp22.1 in 4 of 7 (57.1%) BPDCNs. ZRSR2 mutations were present in 71-84% of sequence reads at their respective locations, consistent with homo/hemizygous alterations in a dominant clone. Xenografting of one BPDCN that harbored a ZRSR2 premature stop mutation resulted in leukemia engraftment that retained the ZRSR2 mutation. From a validation cohort of 32 additional adult and pediatric BPDCNs, ZRSR2 mutations were present in 11 cases, for a total of 15 of 39 (38.5%) patients. Ten of 15 mutations were premature stop, frame shift, or splice site, while the remaining were missense variants. ZRSR2 is recurrently mutated in MDS and AML but at a much lower frequency (1-5%), and ZRSR2 mutations have not been described as characteristic of any other malignancy. Thus, ZRSR2 mutations are approximately 10-fold more prevalent among BPDCNs as compared to MDS or AML, indicating a unique association between BDPCN and ZRSR2 mutation. BPDCN is predominantly a disease of the male sex, both in previous studies and in our cohort (28 males among 36 patients, 77.8%). In a prior report (Yoshida et al. Nature 2012), 12 of 12 cases of MDS with ZRSR2 nonsense and frame shift mutations were male. All 10 cases of BPDCN with ZRSR2 nonsense, frame shift, and splice site mutations in our cohort were male (P=0.076 by two-sided Fisher’s exact test). Thus, we hypothesize that BPDCN may be more common in males because of a gene dosage effect related to the chr.X location of ZRSR2. There was also a trend toward an association between ZRSR2 loss-of-function mutation and age ≥65 (P=0.068). There was no statistically significant difference in overall survival between patients with and without mutations in ZRSR2, although we were limited by the small cohort size and the heterogeneity of therapies received. We conclude that loss of ZRSR2 function is specifically associated with pDC transformation and leukemogenesis, as well as male sex and older age. Further studies to confirm these findings in additional cohorts and define the mechanism linking ZRSR2 mutation with BPDCN are underway. Disclosures: DeAngelo: Ariad, Novartis, BMS: Consultancy. Neuberg:Synta Pharmaceuticals: Trust owns stock; I am a Trustee Other.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 5888
Author(s):  
C. Cameron Yin ◽  
Naveen Pemmaraju ◽  
M. James You ◽  
Shaoying Li ◽  
Jie Xu ◽  
...  

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare, aggressive neoplasm derived from plasmacytoid dendritic cells. While advances in understanding the pathophysiology of the disease have been made, integrated systematic analyses of the spectrum of immunophenotypic and molecular alterations in real-world clinical cases remain limited. We performed mutation profiling of 50 BPDCN cases and assessed our findings in the context of disease immunophenotype, cytogenetics, and clinical characteristics. Patients included 42 men and 8 women, with a median age of 68 years (range, 14–84) at diagnosis. Forty-two (84%) patients had at least one mutation, and 23 (46%) patients had ≥3 mutations. The most common mutations involved TET2 and ASXL1, detected in 28 (56%) and 23 (46%) patients, respectively. Co-existing TET2 and ASXL1 mutations were present in 17 (34%) patients. Other recurrent mutations included ZRSR2 (16%), ETV6 (13%), DNMT3A (10%), NRAS (10%), IKZF1 (9%), SRSF2 (9%), IDH2 (8%), JAK2 (6%), KRAS (4%), NOTCH1 (4%), and TP53 (4%). We also identified mutations that have not been reported previously, including ETNK1, HNRNPK, HRAS, KDM6A, RAD21, SF3A1, and SH2B3. All patients received chemotherapy, and 20 patients additionally received stem cell transplantation. With a median follow-up of 10.5 months (range, 1–71), 21 patients achieved complete remission, 4 had persistent disease, and 24 died. Patients younger than 65 years had longer overall survival compared to those who were ≥65 years (p = 0.0022). Patients who had ≥3 mutations or mutations in the DNA methylation pathway genes had shorter overall survival (p = 0.0119 and p = 0.0126, respectively). Stem cell transplantation significantly prolonged overall survival regardless of mutation status. In conclusion, the majority of patients with BPDCN have somatic mutations involving epigenetic regulators and RNA splicing factors, in addition to ETV6 and IKZF1, which are also frequently mutated. Older age, multiple mutations, and mutations in the DNA methylation pathway are poor prognostic factors.


Leukemia ◽  
2013 ◽  
Vol 28 (4) ◽  
pp. 823-829 ◽  
Author(s):  
J Menezes ◽  
F Acquadro ◽  
M Wiseman ◽  
G Gómez-López ◽  
R N Salgado ◽  
...  

2020 ◽  
Vol 111 (5) ◽  
Author(s):  
Delia Cangini ◽  
Paolo Silimbani ◽  
Alessandro Cafaro ◽  
Maria B. Giannini ◽  
Carla Masini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document