Brief Report: Observations on Conjugated and Unconjugated Blood Folate Levels in Megaloblastic Anemia and the Effects of Vitamin B12

Blood ◽  
1965 ◽  
Vol 26 (3) ◽  
pp. 354-359 ◽  
Author(s):  
K. N. JEEJEEBHOY ◽  
S. M. PATHARE ◽  
J. M. NORONHA

Abstract Vitamin B12 deficiency was associated with a rise in unconjugated folates and marked depletion of intracellular conjugated folates. The changes could be reversed by giving vitamin B12. These results probably indicate a way by which vitamin B12 and folic acid are interrelated at the cellular level.

Blood ◽  
1963 ◽  
Vol 21 (4) ◽  
pp. 447-461 ◽  
Author(s):  
MATHEWS B. FISH ◽  
MYRON POLLYCOVE ◽  
THOMAS V. FEICHTMEIR

Abstract Intermediary metabolism of the monocarbon pool and histidine in normal subjects and patients with megaloblastic anemia was studied by continuous measurement of pulmonary excretion of C14O2 and urinary excretion of C14 after injection of L-histidine-2(ring)-C14. Cumulative pulmonary and renal excretion of C14 for 1 month by two normal subjects approximates 45 per cent of the amount injected. Within 4 months after injection of the dose used in this study, the resultant average tissue radiation decreases below the average natural terrestrial and cosmic radiation level. Simultaneous determination of two parameters, (1) cumulative 1-hour pulmonary C14 excretion and (2) the time of occurrence of maximum C14O2specific activity (Tmax), may permit rapid and unequivocal differentiation between folic acid deficiency and vitamin B12 deficiency in the pathogenesis of megaloblastic anemia. Folio acid deficiency results in marked diminution of pulmonary C14 excretion (approximately 0.1 per cent of injection C14 in 1 hour) and marked prolongation of C14O2-specific activity Tmax (approximately 3 hours), while both parameters are normal (approximately 1 per cent and less than 1 hour, respectively) in patients with vitamin B12 deficiency and megaloblastic anemia. Measurement during periods of reticulocyte response to either folio acid or vitamin B12 demonstrate normal C14O2-specific activity Tmax but decreased pulmonary C14 excretion. These observations suggest that prolongation of C14O2-specific activity Tmax is a sensitive index of folic acid deficiency or block and that if Tmax is normal, pulmonary C14 excretion is a sensitive index of the relative partition of the active monocarbon pool between pathways for oxidation and pathways for nucleic acid synthesis. This type of breath analysis seems to provide a quantitative dynamic representation of metabolic function which may be particularly useful in differentiating between the alterations of intermediary metabolism that occur in patients with folic acid-deficient megaloblastic anemia and in patients with vitamin B12-deficient megaloblastic anemia.


2019 ◽  
Vol 89 (5-6) ◽  
pp. 255-260
Author(s):  
Inanc Karakoyun ◽  
Can Duman ◽  
Fatma Demet Arslan ◽  
Anil Baysoy ◽  
Banu Isbilen Basok

Abstract. CA 15-3 is a tumor-associated antigen and is overexpressed in breast tumors, and may also be high in some other non-cancerous conditions. The aim of this study was to investigate the effect of megaloblastic anemia due to vitamin B12 or folic acid deficiency on the levels of tumor markers. Five-year patient data were retrospectively analyzed. The associations between megaloblastic anemia due to vitamin B12 deficiency and CA 15-3, CA 125, CA 19-9, CEA, and AFP levels were analyzed. Furthermore, association between CA 15-3 level and megaloblastic anemia due to folic acid deficiency was evaluated. Median CA 15-3 level was 38.1 U/mL in the group with megaloblastic anemia due to vitamin B12 deficiency(n = 15), 46.7 U/mL in the group with megaloblastic anemia related to folic acid deficiency (n = 3), and 17.8 U/mL in the normal group(n = 1724). CA 15-3 levels were significantly higher among patients with vitamin B12- and folic acid-associated megaloblastic anemia compared to the normal group (p = 0.001 and p = 0.005, respectively). Megaloblastic anemia due to vitamin B12 deficiency was not associated with any significant differences in CA 125, CA 19-9, CEA, or AFP levels compared to the normal group (p = 0.777, p = 0.327, p = 0.577, and p = 0.197, respectively). The numbers of anemic and normal subjects compared in these tests were 12 vs. 1501, 17 vs. 1827, 4 vs. 897, and 8 vs. 1041, respectively. In conclusion, megaloblastic anemia results in ineffective erythropoiesis, and increased levels of CA 15-3 may be associated with this issue. Clinicians should take this into account when evaluating for a pre-diagnosis of breast cancer.


Blood ◽  
1977 ◽  
Vol 49 (6) ◽  
pp. 987-1000 ◽  
Author(s):  
R Carmel ◽  
B Tatsis ◽  
L Baril

A patient with recurrent pulmonary abscess, weight loss, and alcoholism was found to have extremely high serum vitamin B12 and unsaturated vitamin B12-binding capacity (UBBC) levels. While transcobalamin (TC) II was also increased, most of his UBBC was due to an abnormal binding protein which carried greater than 80% of the endogenous vitamin B12 and was not found in his saliva, granulocytes, or urine. This protein was shown to be a complex of TC II and a circulating immunoglobulin (IgGkappa and IgGlambda). Each IgG molecule appeared to bind two TC II molecules. The reacting site did not interfere with the ability of TC II to bind vitamin B12, but did interfere with its ability to transfer the vitamin to cells in vitro. The site was not identical to that reacting with anti-human TC II antibody produced in rabbits. Because of this abnormal complex, 57Co-vitamin B12 injected intravenously was cleared slowly by the patient. However, no metabolic evidence for vitamin B12 deficiency was demonstrable, although the patient initially had megaloblastic anemia apparently due to folate deficiency. The course of the vitamin B12-binding abnormalities was followed over 4 yr and appeared to fluctuate with the status of the patient's illness. The IgG-TC II complex resembled one induced in some patients with pernicious anemia by intensive treatment with long-acting vitamin B12 preparations. The mechanism of induction of the antibody formation in our patient is unknown.


2020 ◽  
Vol 11 (1) ◽  
pp. 114-120
Author(s):  
Susianto Susianto

Introduction: Vegetarians consume plant-based foods with or without eggs and milk. Vegetarians are at risk of vitamin B12 deficiency, as natural sources of vitamin B12 are limited to animal-based foods. Vitamin B12 deficiency can lead to megaloblastic anemia, nerve damage and increase homocysteine level. Higher homocysteine level can increase the risk of coronary heart disease and stroke. The objective of this study was to investigate the effect of vitamin B12 fortification on the level of serum vitamin B12 and homocysteine in vegetarian. Method: The research design was an experimental study, community trial. The samples were 42 vegetarians with vitamin B12 deficiency (< 156 pmol/L) selected from 118 vegetarians as members of Indonesia Vegetarian Society (IVS) Pekanbaru, treated by vitamin B12 fortified oatmeal for three months from March to June 2010.  Serum vitamin B12 and homocysteine were measured by electrochemiluminescent immunoassay and microparticle enzyme immunoassay method respectively. Result: Prevalence of vitamin B12 deficiency in vegetarian was 35.6%. Statistical analysis showed a significant increase of serum vitamin B12 from 124.6 to 284.6 pmol/L (p=0.001) and significant decrease of serum homocysteine from 20.1 to 15.1 µmol/L (p=0.001). Conclusion: Consumption of vitamin B12 fortified oatmeal increases the level of serum vitamin B12 and decreases the level of serum homocysteine significantly in vegetarian with vitamin B12 deficiency.


2013 ◽  
Vol 7 (4) ◽  
pp. 83 ◽  
Author(s):  
Suheyl Asma ◽  
Cigdem Gereklioglu ◽  
Ahmet Erdogan ◽  
Mahmut Yeral ◽  
Mutlu Kasar ◽  
...  

Blood ◽  
1951 ◽  
Vol 6 (10) ◽  
pp. 867-891 ◽  
Author(s):  
G. E. CARTWRIGHT ◽  
BETTY TATTING ◽  
JEAN ROBINSON ◽  
N. M. FELLOWS ◽  
F. D. GUNN ◽  
...  

Abstract In an effort to produce a deficiency of vitamin B12 a total of 70 pigs were fed a purified diet containing soybean alpha protein in place of casein. One group of animals was started on the diet at 2 to 7 days of age. A second group began at 21 to 28 days of age. Methionine, iodinate casein, desiccated thyroid and pteroylglutamic acid were added to the diet of certain animals and! omitted from the diet of other pigs. In addition, 9 pigs were gastrectomized. Forty-three of the animals survived for a sufficiently long period of time for adequate evaluation of the results of the experiment. Severe liver damage was observed in 24 of the 25 animals autopsied. The only animal not showing liver damage received vitamin B12 from the beginning of the experiment. Necrosis of the liver cells, fatty infiltration, or both, occurred in the presence of a high fat diet containing apparently adequate amounts of protein, choline, vitamin E and methionine. These pathologic changes were apparently prevented but not reversed by the administration of vitamin B12. Growth of the animals on the above diets without added vitamin B12 was retarded as compared with the growth of animals on the same diet supplemented with this vitamin. The administration of vitamin B12 to the deficient animals resulted in rapid growth. Of the 39 animals not receiving vitamin B12 13 failed to develop anemia, 16 developed a mild anemia and in 10 a moderately severe anemia was present. When present the anemia was normocytic and in 24 pigs was accompanied by a moderately severe neutropenia. Differential cell counts on the sternal marrow were normal except for a slight increase in the proportion of normoblasts. These hematologic alterations were neither consistently or completely corrected by the administration of vitamin B12 in spite of the fact that definite and sometimes marked reticulocyte increases followed. When methionine deficiency was associated with vitamin B12 deficiency, anemia appeared to be more severe. The administration of aureomycin, an "animal protein factor," did not stimulate growth and failed to induce a hemopoietic response. There was no macrocytic anemia, the bone marrow was not megaloblastic, and neurologic disturbances or morphologic alterations in the neutrophils were not observed. These results are in contrast to those obtained in pigs with an experimentally produced deficiency of pteroylglutamic acid. Such animals develop macrocytic anemia, leukopenia and a macronormoblastic type of bone marrow. It is not possible to give with any assurance the reason why megaloblastic anemia was not produced in the "B12-deficient" animals. This may have been due to the fact that (1) the deficiency was not sufficiently severe to result in such a change in the hemopoietic system; or (2) because pteroylglutamic acid prevents the development of megaloblastic anemia even in the absence of vitamin B12.


2017 ◽  
Vol 55 (1) ◽  
pp. 3-7 ◽  
Author(s):  
Mahmoud Arshad ◽  
Sara Jaberian ◽  
Abdolreza Pazouki ◽  
Sajedeh Riazi ◽  
Maryam Aghababa Rangraz ◽  
...  

Abstract Background. The association between obesity and different types of anemia remained uncertain. The present study aimed to assess the relation between obesity parameters and the occurrence of iron deficiency anemia and also megaloblastic anemia among Iranian population. Methods and Materials. This cross-sectional study was performed on 1252 patients with morbid obesity that randomly selected from all patients referred to Clinic of obesity at Rasoul-e-Akram Hospital in 2014. The morbid obesity was defined according to the guideline as body mass index (BMI) equal to or higher than 40 kg/m2. Various laboratory parameters including serum levels of hemoglobin, iron, ferritin, folic acid, and vitamin B12 were assessed using the standard laboratory techniques. Results. BMI was adversely associated with serum vitamin B12, but not associated with other hematologic parameters. The overall prevalence of iron deficiency anemia was 9.8%. The prevalence of iron deficiency anemia was independent to patients’ age and also to body mass index. The prevalence of vitamin B12 deficiency was totally 20.9%. According to the multivariable logistic regression model, no association was revealed between BMI and the occurrence of iron deficiency anemia adjusting gender and age. A similar regression model showed that higher BMI could predict occurrence of vitamin B12 deficiency in morbid obese patients. Conclusion. Although iron deficiency is a common finding among obese patients, vitamin B12 deficiency is more frequent so about one-fifth of these patients suffer vitamin B12 deficiency. In fact, the exacerbation of obesity can result in exacerbation of vitamin B12 deficiency.


1974 ◽  
Vol 47 (6) ◽  
pp. 617-630
Author(s):  
A. Lavoie ◽  
E. Tripp ◽  
A. V. Hoffbrand

1. The uptake of 14C from [methyl-14C]methyItetrahydrofolate was significantly reduced in the phytohaemagglutinin (PHA)-stimulated lymphocytes from nine patients with untreated pernicious anaemia compared with the uptake in seven normal subjects. 2. The uptake of 14C from [14C]methyltetrahydrofolate by the lymphocytes from seven of the patients with pernicious anaemia was consistently increased by addition of vitamin B12in vitro. 3. The proportion of 14C taken up from [14C]methyltetrahydrofolate transferred to non-folate compounds was found to be significantly reduced in the PHA-stimulated lymphocytes from nine patients with untreated pernicious anaemia compared with the proportion transferred in the PHA-stimulated lymphocytes from seven normal subjects. Addition of vitamin B12in vitro consistently increased the transfer in vitamin B12-deficient cells but had no consistent effect in normal cells. 4. Normal and vitamin B12-deficient PHA-stimulated lymphocytes took up [3H]folic acid and after 72 h incubation converted this largely into pteroylpolyglutamate forms. 5. The proportion of labelled lymphocyte folate as pteroylpolyglutamate after incubation with [3H]folic acid was the same in vitamin B12-deficient as in normal lymphocytes and the proportion of pteroylpolyglutamates formed in vitamin B12-deficient lymphocytes was unaffected by addition of vitamin B12in vitro. 6. No radioactivity could be decteted in pteroylpolyglutamates after incubating normal PHA-stimulated lymphocytes with [14C]methyltetrahydrofolate for 72 h, suggesting that pteroylpolyglutamate forms of folate cannot be made directly from methyltetrahydrofolate. 7. These results are consistent with the ‘methyltetrahydrofolate trap’ hypothesis in vitamin B12 deficiency. It is suggested that reduced synthesis of pteroylpolyglutamates reported by others in vitamin B12-deficient cells may be secondary to the failure of removal of the methyl group from methyltetrahydrofolate rather than to a direct effect of vitamin B12 deficiency on the enzyme responsible for pteroylpolyglutamate synthesis. 8. Reduced entry of methyltetrahydrofolate into vitamin B12-deficient cells may be secondary to failure of conversion of this compound into tetrahydrofolate.


Sign in / Sign up

Export Citation Format

Share Document