scholarly journals Durable Normal Erythropoiesis in Organotypic Cultures of Guinea Pig Foetal Liver

Blood ◽  
1969 ◽  
Vol 34 (4) ◽  
pp. 472-476 ◽  
Author(s):  
GERMANO SALVATORELLI ◽  
ANNA MARIA GULINATI ◽  
PAOLO DEL GRANDE

Abstract It is demonstrated that anemic guinea pig serum maintains erythropoiesis in organotypic cultures of fetal guinea pig liver for at least 14 days. The action of the anemic serum seems be due to the stimulation of the differentiation of stem-cells into erythroblasts. If fetal guinea pig liver is cultured on normal serum the cytodifferentiation stops during the first days of culture whereas the maturation of normoblasts can continue for a few days. The number of stem-cells diminishes considerably and after 4 days they all disappear. On the contrary in culture on anemic serum, their number is unaltered even after two weeks in culture and this seems to indicate that the anemic serum displays a favorable action in the maintenance of the pool of undifferentiated cells in the explants.

1969 ◽  
Vol 111 (4) ◽  
pp. 503-507 ◽  
Author(s):  
Julienne M. Turnbull ◽  
M. W. Neil

1. Lysosome-rich fractions were obtained from foetal liver tissues as early as 35 days uterine age. Foetal lysosomes showed the same ‘structure-linked latency’ and acid hydrolytic potentiality characteristic of their adult counterparts. 2. The osmotic stability of lysosome-rich fraction from foetal guinea-pig liver tissue was greater than that of the corresponding adult lysosome fractions, p-nitrophenyl-phosphatase being used as marker enzyme. 3. The observation was confirmed by using β-glycerophosphatase and phenolphthalein β-glucuronidase as alternative marker enzymes. p-Nitrophenyl phosphate and β-glycerophosphate appear to act as substrates for the same enzyme. 4. By using p-nitrophenylphosphatase activity measurements it was shown that the osmotic stability of foetal lysosomal fractions decreased with increasing foetal age, but at no time achieved the degree of osmotic instability characteristic of adult lysosomal fractions. 5. The correlation of these findings with the intracellular environment of lysosomes is discussed.


1976 ◽  
Vol 154 (1) ◽  
pp. 159-161 ◽  
Author(s):  
C T Jones ◽  
W Firmin

The rate of lipid biosynthesis in vivo was determined in pregnant guinea pigs after maternal and foetal injections of 3H2O. Synthesis in the maternal tissues was low and in the foetal liver and adipose tissues relatively high. In the foetal liver it reached a peak at about two-thirds of gestation, whereas that in the foetal adipose tissue occurred later. These results were used to support the view that lipid synthesis in the foetal guinea-pig liver at two-thirds of gestation is largely from short-chain fatty acids, whereas in foetal adipose tissue glucose is probably the major substrate.


1977 ◽  
Vol 32 (11-12) ◽  
pp. 908-912 ◽  
Author(s):  
H. J. Schmidt ◽  
U. Schaum ◽  
J. P. Pichotka

Abstract The influence of five different methods of homogenisation (1. The method according to Potter and Elvehjem, 2. A modification of this method called Potter S, 3. The method of Dounce, 4. Homogenisation by hypersonic waves and 5. Coarce-grained homogenisation with the “Mikro-fleischwolf”) on the absolute value and stability of oxygen uptake of guinea pig liver homogenates has been investigated in simultaneous measurements. All homogenates showed a characteristic fall of oxygen uptake during measuring time (3 hours). The modified method according to Potter and Elvehjem called Potter S showed reproducible results without any influence by homogenisation intensity.


1990 ◽  
Vol 18 (1_part_1) ◽  
pp. 191-199
Author(s):  
Hanan N. Ghantous ◽  
Jeanne Fernando ◽  
Scott E. Morgan ◽  
A. Jay Gandolfi ◽  
Klaus Brandel

Cultured precision-cut liver slices retain normal liver architecture and physiological biochemical functions. Hartley male guinea-pig liver slices have proven to be a good model for studying the biotransformation and toxicity of halothane. This system was used to evaluate the biotransformation and toxicity of different volatile anaesthetics (halothane, enflurane, isoflurane and sevoflurane), and compare their effects to those of new anaesthetics (desflurane). Liver slices (250–300μm thick) were incubated in sealed roller vials, containing Krebs Henseleit buffer at 37°C under 95% O2:5% CO2 atmosphere. Volatile anaesthetics were delivered by volatilisation after pre-incubation for 1 hour to produce a constant concentration in the medium. Production of the metabolites, trifluroacetic acid and fluoride ion, was measured. Intracellular potassium ion content, protein synthesis and secretion were determined as indicators of viability of the slices. The rank order of biotransformation of anaesthetics by the liver slices was halothane >sevoflurane>isoflurane and enflurane>desflurane. The rank order of hepatotoxicity of these anaesthetics was halothane>isoflurane and enflurane>sevoflurane and desflurane. Halothane is the anaesthetic which is metabolised furthest and has the most toxic effect, while desflurane is the least metabolised anaesthetic and has the least toxicity. This in vitro cultured precision-cut liver slice system appears to be suitable for studying the biotransformation of volatile anaesthetics and correlating its role in the resulting toxicity.


1992 ◽  
Vol 267 (20) ◽  
pp. 14027-14032
Author(s):  
V Gopalan ◽  
A Pastuszyn ◽  
W R Galey ◽  
R.H. Glew

1956 ◽  
Vol 221 (2) ◽  
pp. 697-709 ◽  
Author(s):  
Oscar Touster ◽  
V.H. Reynolds ◽  
Ruth M. Hutcheson

Sign in / Sign up

Export Citation Format

Share Document