scholarly journals The Kinetics of the Normal, the Megaloblastic and the Sideroachrestic Erythropoiesis Estimated by Colchicine Blocking In Vitro

Blood ◽  
1971 ◽  
Vol 37 (2) ◽  
pp. 204-210 ◽  
Author(s):  
I. T. M. BOLL ◽  
H.-P. KOENIGS

Abstract By adding colchicine to bone marrow cultures we developed further parameters for kinetics in normal, megaloblastic and sideroachrestic bone marrow. The increased regeneration in megalopoiesis is demonstrated by an increased mitotic index, an increased stathmokinetic index, a shortened cell doubling time and the prolongation of the divisable pool to the oxyphile erythroblasts which only mature in the normal state. To get ineffective erythropoiesis, the maturation in vivo must have been delayed by an increased number of generations up to the formation of megalocytes. From the stathmokinetic test in vitro, the maturation in megalopoiesis is accelerated as a result of the inhibition of α-2 α-divisions. In normal erythropoiesis stopping mitoses by colchicine probably causes a delayed maturation because the next maturation stage cannot be reached without the regular n-2n-division. In sideroachrestic anemia, the maturation behaves normally but the stathmokinetic test is very high. We conclude that the maturation and mode of division in sideroachrestic anemia is nearly normal.

1979 ◽  
Author(s):  
K. L. Kellar ◽  
B. L. Evatt ◽  
C. R. McGrath ◽  
R. B. Ramsey

Liquid cultures of bone marrow cells enriched for megakaryocytes were assayed for incorporation of 3H-thymidine (3H-TdR) into acid-precipitable cell digests to determine the effect of thrombopoietin on DNA synthesis. As previously described, thrombopoietin was prepared by ammonium sulfate fractionation of pooled plasma obtained from thrombocytopenic rabbits. A control fraction was prepared from normal rabbit plasma. The thrombopoietic activity of these fractions was determined in vivo with normal rabbits as assay animals and the rate of incorporation of 75Se-selenomethionine into newly formed platelets as an index of thrombopoietic activity of the infused material. Guinea pig megakaryocytes were purified using bovine serum albumin gradients. Bone marrow cultures containing 1.5-3.0x104 cells and 31%-71% megakaryocytes were incubated 18 h in modified Dulbecco’s MEM containing 10% of the concentrated plasma fractions from either thrombocytopenic or normal rabbits. In other control cultures, 0.9% NaCl was substituted for the plasma fractions. 3H-TdR incorporation was measured after cells were incubated for 3 h with 1 μCi/ml. The protein fraction containing thrombopoietin-stimulating activity caused a 25%-31% increase in 3H-TdR incorporation over that in cultures which were incubated with the similar fraction from normal plasma and a 29% increase over the activity in control cultures to which 0.9% NaCl had been added. These data suggest that thrombopoietin stimulates DNA synthesis in megakaryocytes and that this tecnique may be useful in assaying thrombopoietin in vitro.


1981 ◽  
Vol 60 (2) ◽  
pp. 346-353 ◽  
Author(s):  
Kenichi Harigaya ◽  
Marilyn E. Miller ◽  
Eugene P. Cronkite ◽  
Robert T. Drew

Blood ◽  
1989 ◽  
Vol 74 (6) ◽  
pp. 1952-1962
Author(s):  
DJ Kuter ◽  
SM Greenberg ◽  
RD Rosenberg

Megakaryocytes undergo changes in ploidy in vivo in response to varying demands for platelets. Attempts to study the putative factor(s) regulating these ploidy changes have been frustrated by the lack of an appropriate in vitro model of megakaryocyte endomitosis. This report describes a culture system in which rat bone marrow is depleted of identifiable megakaryocytes and enriched in their precursor cells. Morphologically identifiable megakaryocytes appear when the depleted marrow is cultured in vitro. The total number of nucleated cells, as well as the number of megakaryocytes and their ploidy distribution, are quantitated very precisely by flow cytometry. Although the total number of nucleated cells declines by 35% to 40% over 3 days in culture, the number of megakaryocytes rises 10-fold. The number of nucleated cells, the number of megakaryocytes, and the extent of megakaryocyte ploidization behave as independent variables in culture and are dependent on the culture conditions. The addition of recombinant erythropoietin promotes a rise in the number of megakaryocytes and a shift in ploidy to higher values while recombinant murine granulocyte- macrophage colony stimulating factor is without effect on the cultured megakaryocytes. This in vitro system may provide a means to study those factors that affect megakaryocyte growth and ploidization.


Blood ◽  
2008 ◽  
Vol 111 (1) ◽  
pp. 150-159 ◽  
Author(s):  
Ben Fancke ◽  
Mark Suter ◽  
Hubertus Hochrein ◽  
Meredith O'Keeffe

The critical importance of plasmacytoid dendritic cells (pDCs) in viral infection, autoimmunity, and tolerance has focused major attention on these cells that are rare in blood and immune organs of humans and mice. The recent development of an Flt-3 ligand (FL) culture system of bone marrow cells has led to the simple generation of large numbers of pDCs that resemble their in vivo steady-state counterparts. The FL system has allowed unforeseen insight into the biology of pDCs, and it is assumed that FL is the crucial growth factor for these cells. Surprisingly we have found that a cell type with high capacity for interferon-α (IFN-α) production in response to CpG-containing oligonucleotides, a feature of pDCs, develop within macrophage–colony-stimulating factor (M-CSF)–generated bone marrow cultures. Analysis of this phenomenon revealed that M-CSF is able to drive pDCs as well as conventional DCs (cDCs) from BM precursor cells in vitro. Furthermore, application of M-CSF to mice was able to drive pDCs and cDCs development in vivo. It is noteworthy that using mice deficient in FL indicated that the M-CSF-driven generation of pDCs and cDCs in vitro and in vivo was independent of endogenous FL.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1362-1362 ◽  
Author(s):  
Sylvia Takacova ◽  
Pavla Luzna ◽  
Viktor Stranecky ◽  
Vladimir Divoky

Abstract Abstract 1362 During the multistep pathogenesis of acute leukemia (AL), a pool of leukemia stem cells (LSCs) emerges that is capable of limitless self-renewal and ensuring disease maintenance. The molecular mechanism that controls the kinetics of cellular transformation and development of LSCs is largely unknown. Using our MLL-ENL-ERtm mouse model, we have previously shown (Takacova et al., Blood 2009, 114 (22): 947–947, ASH abstract) activation of the ATR/ATM-Chk1/Chk2-p53/p21 checkpoint leading to senescence at early stages of cellular transformation (myeloproliferation), thereby preventing AL development in vivo. Experimental ATM/ATR inhibition accelerated the transition to immature cell states, acquisition of LSC properties and AL development in these mice. The MLL-ENL-ERtm mouse model allows us to study the kinetics of MLL-ENL-ERtm LSC development. We raised the questions how the transformation process progresses from the pre-LSC to the LSC state, and how DNA damage response (DDR) - mediated senescence affects the transition in gene expression. Given that the threshold of DDR signaling events is rate-limiting, we determined the transcription profile of the pre- LSC–enriched cell states derived from bone marrow and spleen of the MLL-ENL-ERtm mice at the early disease stage, and we correlated this transcription profile with the level of DDR, proliferation rate and induction of senescence. Pair-wise comparisons revealed up-regulation of the Six1 transcription factor gene and its cofactor Eya1 in the MLL-ENL-ERtm pre-LSCs in association with aberrant proliferation in both tissues. The notable difference between the two tissues concerning the barrier induction was the higher threshold of DDR and senescence in the bone marrow due to cooperation with inflammatory cytokines that fine-tune the DDR level. Interestingly, the expression of Six1 and Eya1 genes was down-regulated in senescence exclusively in the bone marrow. Consistent with these in vivo data, we found Six1 expression decreased in response to inflammation/DDR-induced senescence in the MLL-ENL-ERtm bone marrow cells cultured in vitro and correlated with SA-beta-gal positivity and p16 up-regulation. Six1 mRNA level was decreased only transiently after ionizing radiation (4 Gy)-induced DDR in the same cell line. These data suggest that Six1 expression is down-regulated in response to high DDR and permanent cell-cycle arrest in the MLL-ENL-ERtm pre-LSCs. Furthermore, we identified the transcription profile of the LSC-enriched cell state after inhibition of DDR in caffeine-treated MLL-ENL-ERtm mice in vivo. Interestingly, the expression level of Six1 and Eya1 was significantly increased in the bone marrow and spleen of the MLL-ENL-ERtm AML mice compared to the early (preleukemia) stage. High expression of Six1 and Eya1 and higher cell number expressing these genes was further confirmed by immunohistochemical staining on tissue sections. The MLL-ENL-ERtm LSC-enriched spleen cells showed increased colony forming ability in vitro and leukemia-initiating potential in serial transplantation experiments compared to pre-LSCs. Moreover, we detected Six1 and Eya1 expression in the infiltrating leukemia cells in tissues of the caffeine-treated MLL-ENL-ERtm AML mice and in a subset of leukemia cells in transplanted mice. Based on these findings and correlations, we hypothesized that the Six1/Eya1 pathway might be involved in regulation of some of the aspects of LSC development as well as invasion and maintenance of leukemia in our MLL-ENL-ERtm mice. Notably, our data indicate that senescence represses a subset of the MLL-ENL-downstream transcription response and prevents full activation of self-renewal. Experiments leading to more detailed understanding of the role of the Six1/Eya1 pathway in the MLL-ENL-induced cellular transformation are ongoing. Disclosures: No relevant conflicts of interest to declare.


1984 ◽  
Vol 4 (1) ◽  
pp. 216-220 ◽  
Author(s):  
J M Heard ◽  
S Fichelson ◽  
B Sola ◽  
M A Martial ◽  
B Varet ◽  
...  

A helper-independent Friend leukemia virus was used to infect bone marrow cultures. This virus induces myeloblastic leukemia in mice after a long latency period. Infection of the bone marrow cultures resulted in the in vitro production of myeloblastic leukemogenesis after a long latency period. Three steps were observed in the evolution of the infected cultures, and permanent cell lines were derived at each step. This allowed us to individualize three successive events in the course of the myeloblastic transformation: (i) an abnormal responsiveness to the physiological hormone granulo-macrophagic colony-stimulating factor, (ii) the acquisition of growth autonomy, and (iii) the acquisition of in vivo tumorigenicity.


Blood ◽  
1976 ◽  
Vol 48 (4) ◽  
pp. 601-608 ◽  
Author(s):  
FD Wilson ◽  
L O'Grady

Abstract Studies on the mechanism of anemia in mice of genotype S1/S1d have implicated the hematopoietic stroma (the hematopoietic inductive microenvironment, HIM) rather than hematopoietic stem cells as the site of the defect. Using methylcellulose-supported bone marrow culture systems, we have observed, in addition to classical hematopoietic colonies, the formation of surface associated fibroblastic plaques that could stimulate hematopoietic colony growth. These plaques were hypothesized to be derived from bone marrow stroma precursors. In view of the reported stromal-based defect in S1/S1d mice, studies were initiated, using our culture system, to determine if abnormalities exist in the plaque-forming potentials of these mice. Relative to controls, bone marrow derived from S1/S1d mice exhibited a significant decrease in hematopoietic colonly-forming units in culture, but no differences were apparent in the absolute numbers of fibroblastic plaque-forming units or in the ability of such plaques once derived to stimulate hematopoietic colony growth when overlain with fresh normal bone marrow preparations. Quantitative studies on the bone marrow of the S1/S1d mice revealed a marked reduction in total nucleated cells per femur. The importance of evaluating the results of bone marrow cultures in an absolute (i.e., number of units per femur) rather than a relative (i.e., number of units forming in a constant cell inoculum) term was underlined by these studies.


1973 ◽  
Vol 137 (1) ◽  
pp. 10-21 ◽  
Author(s):  
Jan Thompson ◽  
Ralph van Furth

To elucidate mechanisms underlying the prolonged monocytopenia induced in the peripheral blood of mice by injection of a subcutaneous depot of hydrocortisone acetate, the effect of this compound on the production of monocytes and their release from the bone marrow was studied. Hydrocortisone was found to cause a rapid reduction of the bone marrow promonocytes to about 65% of their initial number. The number of monocytes in the bone marrow decreased gradually, over a period of 96 h, to 75% of the initial value. The mitotic activity of the promonocytes was not diminished, as judged from the labeling in vitro with [3H]thymidine and the DNA-synthesis and cell-cycle times of these cells. The production of monocytes was only moderately diminished, i.e., to about 80% of the normal amount. The release of monocytes from the bone marrow was found to be influenced by hydrocortisone. After in vivo labeling with [3H]thymidine the monocyte-labeling indices were initially significantly higher in hydrocortisone-treated than in normal mice. It is concluded that a decreased production of monocytes in the bone marrow cannot account for the prolonged monocytopenia in the peripheral blood after hydrocortisone administration. However, hydrocortisone interferes with the release of newly formed monocytes from the bone marrow, resulting in a prolonged sojourn of these cells in this compartment.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 247-247 ◽  
Author(s):  
Michael Dussiot ◽  
Thiago Maciel ◽  
Aurelie Fricot ◽  
Joel Veiga ◽  
Etienne Paubelle ◽  
...  

Abstract Abstract 247 Background: β-thalassemia is associated with ineffective erythropoiesis, accelerated erythroid differentiation and apoptosis resulting in anemia and iron overload. The molecular mechanism involved is still incompletely understood. Members of the TGF-β superfamily participate in both proliferation and differentiation of erythroid progenitors. However, the role of these molecules in models of ineffective erythropoiesis has not been addressed so far. RAP-011 is a ligand trap consisting of the extracellular domain of ActRIIA linked to mouse IgG1 Fc domain. We aimed to study the role of ActRIIA signaling in the ineffective erythropoiesis of β-thalassemia and to evaluate the therapeutic impact of RAP-011. Methods: Hbbth1/th1 mice (a model of β-thalassemia intermedia) were subcutaneously treated with RAP-011 (10mg/kg body weight) twice a week for 30–60 days and biological and biochemical parameters were followed. Results: RAP-011 treatment significantly increased hemoglobin levels, red blood cell counts, MCV, MCH and hematocrit with a concomitant decrease in bilirubin levels and reticulocyte counts (since 10 days of treatment and sustained until day 60 of follow up). Flow cytometry analysis showed that RAP-011 significantly decreased late basophilic and polychromatic erythroblast cell numbers in both bone marrow and spleen indicating that RAP-011 corrects ineffective erythropoiesis. We next evaluated the expression of putative ActRIIA ligand(s) in β-thalassemia. Increased expression of Growth Differentiation Factor 11 (GDF11) was observed in cultured erythroblasts and in spleen sections of thalassemic mice. RAP-011 treatment decreased these elevated GDF11 levels in both bone marrow and spleen. We further investigated how BMP/Activin signaling was involved in ineffective erythropoiesis. Anti-GDF11 antibodies, follistatin (activin and GDF11 antagonist) and dorsomorphin (a small molecule inhibitor of SMAD1/5/8 phosphorylation) reduced differentiation, induced FAS-L expression and apoptosis in erythroblasts both in vivo and in vitro whereas noggin (a BMP-2/4 antagonist) had no effect on erythroblast differentiation. Altogether, these data suggest that Activin/BMP signaling controls erythroblast differentiation and targeting BMP type II /activin type II receptors can decrease ineffective erythropoiesis of β-thalassemia. Summary: Sotatercept (a humanized version of RAP-011) is currently in phase II clinical trials for treatment of anemia in patients with Myeloma Bone Disease and End Stage Renal Disease and data from our non-clinical findings support a newly initiated β-thalassemia clinical trial. Our results suggest that sotatercept would be a potential therapeutic tool to improve anemia, increase hemoglobin levels and correct ineffective erythropoiesis and its side effects in β-thalassemic patients. Disclosures: Daniel: Celgene Corporation: Employment. Chopra:Celgene Corp: Employment, Equity Ownership. Sung:Celgene: Employment.


1990 ◽  
Vol 18 (6) ◽  
pp. 454-458 ◽  
Author(s):  
Brian H. Kushner ◽  
Subhash C. Gulati ◽  
Richard J. O′Reilly ◽  
Glenn Heller ◽  
Nai-Kong V. Cheung
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document