ploidy changes
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 16)

H-INDEX

12
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Galal Yahya ◽  
Paul Menges ◽  
Devi Ngandiri ◽  
Daniel Schulz ◽  
Andreas Wallek ◽  
...  

Abstract Ploidy changes are frequent in nature and contribute to evolution, functional specialization and tumorigenesis. Analysis of model organisms of different ploidies revealed that increased ploidy leads to an increase in cell and nuclear volume, reduced proliferation, metabolic changes, lower fitness, and increased genomic instability, but the underlying mechanisms remain poorly understood. To investigate how the gene expression changes with cellular ploidy, we analyzed isogenic series of budding yeasts from 1N to 4N. We show that mRNA and protein abundance scales allometrically with ploidy, with tetraploid cells showing only threefold increase in proteins compared to haploids. This ploidy-specific scaling occurs via decreased rRNA and ribosomal protein abundance and reduced translation. We demonstrate that the Tor1 activity is reduced with increasing ploidy, which leads to rRNA gene repression via a novel Tor1-Sch9-Tup1 signaling pathway. mTORC1 and S6K activity are also reduced in human tetraploid cells and the concomitant increase of the Tup1 homolog Tle1 downregulates the rDNA transcription. Our results revealed a novel conserved mTORC1-S6K-Tup1/Tle1 pathway that ensures proteome remodeling in response to increased ploidy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhong-Shuai Zhang ◽  
Qing-Yin Zeng ◽  
Yan-Jing Liu

Abstract Backgrounds Populus and Salix belong to Salicaceae and are used as models to investigate woody plant physiology. The variation of karyotype and nuclear DNA content can partly reflect the evolutionary history of the whole genome, and can provide critical information for understanding, predicting, and potentially ameliorating the woody plant traits. Therefore, it is essential to study the chromosome number (CN) and genome size in detail to provide information for revealing the evolutionary process of Salicaceae. Results In this study, we report the somatic CNs of seventeen species from eight genera in Salicaceae. Of these, CNs for twelve species and for five genera are reported for the first time. Among the three subfamilies of Salicaceae, the available data indicate CN in Samydoideae is n = 21, 22, 42. The only two genera, Dianyuea and Scyphostegia, in Scyphostegioideae respectively have n = 9 and 18. In Salicoideae, Populus, Salix and five genera closely related to them (Bennettiodendron, Idesia, Carrierea, Poliothyrsis, Itoa) are based on relatively high CNs from n = 19, 20, 21, 22 to n = 95 in Salix. However, the other genera of Salicoideae are mainly based on relatively low CNs of n = 9, 10, 11. The genome sizes of 35 taxa belonging to 14 genera of Salicaceae were estimated. Of these, the genome sizes of 12 genera and all taxa except Populus euphratica are first reported. Except for Dianyuea, Idesia and Bennettiodendron, all examined species have relatively small genome sizes of less than 1 pg, although polyploidization exists. Conclusions The variation of CN and genome size across Salicaceae indicates frequent ploidy changes and a widespread sharing of the salicoid whole genome duplication (WGD) by the relatives of Populus and Salix. The shrinkage of genome size after WGD indicates massive loss of genomic components. The phylogenetic asymmetry in clade of Populus, Salix, and their close relatives suggests that there is a lag-time for the subsequent radiations after the salicoid WGD event. Our results provide useful data for studying the evolutionary events of Salicaceae.


Author(s):  
Dileep Pullepu ◽  
Wasim Uddin ◽  
Aswathy Narayanan ◽  
M. Anaul Kabir

Background and Objectives: Monosomy of chromosome 5 associated with utilization of non-canonical sugar L-sorbose is one of the well-studied aneuploidies in Candida albicans. Stress-induced ploidy changes are crucial determinants for patho- genicity and genetic diversity in C. albicans. The five scattered regulatory regions (A, B, C, 135, and 139) comprising of two functionally redundant pathways (SUR1 and SUR2) were found to be responsible for the growth on L-sorbose. So far, three genes such as CSU51, CSU53 and CSU57 have been identified in region A, region 135 and region C, respectively. In this study we have verified the role of region B in this regulatory pathway. Materials and Methods: We employed a combinatorial gene deletion approach to verify the role of region B followed by co-over expression studies and qRT-PCR to identify the regulatory role of this region. Results: We confirmed the role of region B in the regulation of SOU1 gene expression. The qRT-PCR results showed that regulation occurs at transcriptional level along with other two regions in SUR1 pathway. A previously uncharacterized open reading frame in region B has been implicated in this regulation and designated as CSU52. Integrating multiple copies of CSU52 in the genome at tandem, suppresses the growth of recipient strain on L-sorbose, establishing it as a repressor of SOU1 gene. Conclusion: This finding completes the identification of regulators in SUR1 pathway. This result paves the way to study the underlying molecular mechanisms of SOU1 gene regulation that in-turn helps to understand stress induced aneuploidy.


Author(s):  
Francesca Pennetta ◽  
Cristina Lagalla ◽  
Raffaella Sciajno ◽  
Nicoletta Tarozzi ◽  
Marco Nadalini ◽  
...  

Background: Despite a plethora of studies conducted so far, a debate is still unresolved as to whether TLM can identify predictive kinetic biomarkers or algorithms universally applicable. Therefore, this study aimed to elucidate if there is a relationship between kinetic variables and ploidy status of human embryos or blastocyst developmental potential. Methods: For conducting this retrospective cohort study, the normal distribution of data was verified using Kolmogorov-Smirnov test with the Lilliefors’ amendment and the Shapiro-Wilk test. Kinetic variables were expressed as median and quartiles (Q1, Q2, Q3, Q4). Mann-Whitney U-test was used to compare the median values of parameters. Univariate and multiple logistic regression models were used to assess relationship between blastocyst developmental potential or ploidy status and kinetics. Several confounding factors were also assessed. Results: Blastocyst developmental potential was positively correlated with the t4-t3 interval (s2) (OR=1.417, 95% CI of 1.288-1.560). s2 median value was significantly different between high- and low-quality blastocysts (0.50 and 1.33 hours post-insemination, hpi, respectively; p=0.003). In addition, timing of pronuclear appearance (tPNa) (OR=1.287; 95% CI of 1.131-1.463) had a significant relationship with ploidy changes. The median value of tPNa was statistically different (p=0.03) between euploid and aneuploid blastocysts (Euploid blastocysts=8.9 hpi; aneuploid blastocysts=10.3 hpi).  Conclusion: The present findings are in line with the study hypothesis that kinetic analysis may reveal associations between cleavage patterns and embryo development to the blastocyst stage and ploidy status.


2021 ◽  
Vol 163 ◽  
pp. 296-307
Author(s):  
Alexandra Martín-Esquinas ◽  
Lourdes Hernández-Apaolaza

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1336
Author(s):  
Caterina Catalano ◽  
Loredana Abbate ◽  
Antonio Motisi ◽  
Dalila Crucitti ◽  
Vincenzo Cangelosi ◽  
...  

Polyploidy plays an important role in plant adaptation to biotic and abiotic stresses. Alterations of the ploidy in grapevine plants regenerated via somatic embryogenesis (SE) may provide a source of genetic variability useful for the improvement of agronomic characteristics of crops. In the grapevine, the SE induction process may cause ploidy changes without alterations in DNA profile. In the present research, tetraploid plants were observed for 9.3% of ‘Frappato’ grapevine somatic embryos regenerated in medium supplemented with the growth regulators β-naphthoxyacetic acid (10 µM) and N6-benzylaminopurine (4.4 µM). Autotetraploid plants regenerated via SE without detectable changes in the DNA profiles were transferred in field conditions to analyze the effect of polyploidization. Different ploidy levels induced several anatomical and morphological changes of the shoots and mature leaves. Alterations have been also observed in stomata. The length and width of stomata of tetraploid leaves were 39.9 and 18.6% higher than diploids, respectively. The chloroplast number per guard cell pair was higher (5.2%) in tetraploid leaves. On the contrary, the stomatal index was markedly decreased (12%) in tetraploid leaves. The observed morphological alterations might be useful traits for breeding of grapevine varieties in a changing environment.


2021 ◽  
Author(s):  
Galal Yahya ◽  
Paul Menges ◽  
Devi Anggraini Ngandiri ◽  
Daniel Schulz ◽  
Andreas Wallek ◽  
...  

Ploidy changes are frequent in nature and contribute to evolution, functional specialization and tumorigenesis (1,2). Analysis of model organisms of different ploidies revealed that increased ploidy leads to an increase in cell and nuclear volume, reduced proliferation (2-4), metabolic changes (5), lower fitness (6,7), and increased genomic instability (8,9), but the underlying mechanisms remain poorly understood. To investigate how the gene expression changes with cellular ploidy, we analyzed isogenic series of budding yeasts from 1N to 4N. We show that mRNA and protein abundance scales allometrically with ploidy, with tetraploid cells showing only threefold increase in proteins compared to haploids. This ploidy-specific scaling occurs via decreased rRNA and ribosomal protein abundance and reduced translation. We demonstrate that the Tor1 activity is reduced with increasing ploidy, which leads to rRNA gene repression via a novel Tor1-Sch9-Tup1 signaling pathway. mTORC1 and S6K activity are also reduced in human tetraploid cells and the concomitant increase of the Tup1 homolog Tle1 downregulates the rDNA transcription. Our results revealed a novel conserved mTORC1-S6K-Tup1/Tle1 pathway that ensures proteome remodeling in response to increased ploidy.


Genes ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1508
Author(s):  
Julia Dupin ◽  
Pauline Raimondeau ◽  
Cynthia Hong-Wa ◽  
Sophie Manzi ◽  
Myriam Gaudeul ◽  
...  

The olive family, Oleaceae, is a group of woody plants comprising 28 genera and ca. 700 species, distributed on all continents (except Antarctica) in both temperate and tropical environments. It includes several genera of major economic and ecological importance such as olives, ash trees, jasmines, forsythias, osmanthuses, privets and lilacs. The natural history of the group is not completely understood yet, but its diversification seems to be associated with polyploidisation events and the evolution of various reproductive and dispersal strategies. In addition, some taxonomical issues still need to be resolved, particularly in the paleopolyploid tribe Oleeae. Reconstructing a robust phylogenetic hypothesis is thus an important step toward a better comprehension of Oleaceae’s diversity. Here, we reconstructed phylogenies of the olive family using 80 plastid coding sequences, 37 mitochondrial genes, the complete nuclear ribosomal cluster and a small multigene family encoding phytochromes (phyB and phyE) of 61 representative species. Tribes and subtribes were strongly supported by all phylogenetic reconstructions, while a few Oleeae genera are still polyphyletic (Chionanthus, Olea, Osmanthus, Nestegis) or paraphyletic (Schrebera, Syringa). Some phylogenetic relationships among tribes remain poorly resolved with conflicts between topologies reconstructed from different genomic regions. The use of nuclear data remains an important challenge especially in a group with ploidy changes (both paleo- and neo-polyploids). This work provides new genomic datasets that will assist the study of the biogeography and taxonomy of the whole Oleaceae.


Sign in / Sign up

Export Citation Format

Share Document