scholarly journals Human T-lymphocyte products stimulate human hemopoietic progenitor cell proliferation in diffusion chambers in vivo

Blood ◽  
1982 ◽  
Vol 60 (2) ◽  
pp. 368-372 ◽  
Author(s):  
E Niskanen ◽  
A Oki ◽  
MJ Cline ◽  
DW Golde

Abstract Human myeloid colony formation in diffusion chambers in mice (CFU-DG) was enhanced following administration of a human T-cell-line-derived conditioned medium (Mo). The Mo cell line also elaborates activities stimulating human myeloid colony formation in vitro in agar (CSF) and potentiating erythroid colony formation in vitro in methylcellulose (EPA). Depletion of CSF from Mo conditioned medium by heat inactivation or gel exclusion chromatography did not affect CFU-DG formation. EPA and CFU-DG stimulating activities are heat stable and have approximately the same molecular weight. Culture of human bone marrow cells in diffusion chambers in mice for 4 days under the influence of Mo conditioned medium resulted in significant increment of BFU-E and CFU-DG as judged by subculture of diffusion chamber contents. No effect on CFU-C could be detected.

Blood ◽  
1982 ◽  
Vol 60 (2) ◽  
pp. 368-372
Author(s):  
E Niskanen ◽  
A Oki ◽  
MJ Cline ◽  
DW Golde

Human myeloid colony formation in diffusion chambers in mice (CFU-DG) was enhanced following administration of a human T-cell-line-derived conditioned medium (Mo). The Mo cell line also elaborates activities stimulating human myeloid colony formation in vitro in agar (CSF) and potentiating erythroid colony formation in vitro in methylcellulose (EPA). Depletion of CSF from Mo conditioned medium by heat inactivation or gel exclusion chromatography did not affect CFU-DG formation. EPA and CFU-DG stimulating activities are heat stable and have approximately the same molecular weight. Culture of human bone marrow cells in diffusion chambers in mice for 4 days under the influence of Mo conditioned medium resulted in significant increment of BFU-E and CFU-DG as judged by subculture of diffusion chamber contents. No effect on CFU-C could be detected.


Blood ◽  
1985 ◽  
Vol 66 (3) ◽  
pp. 686-689
Author(s):  
E Niskanen ◽  
HE Wyandt

Culture of a mixture of bone marrow cells with and without T6 chromosome marker in diffusion chambers in mice yielded colonies (CFU- DG) containing cells of a single karyotype, suggesting clonality. Injection of individual CFU-DG colonies into lethally irradiated mice resulted in increased spleen colony formation on day 12 (CFU-S). The possibility of endogenous origin was excluded by demonstrating the presence of T6 marker in both CFU-DG and CFU-S colonies in karyotypically normal hosts. These findings suggest that the cells giving rise to granulocytic colonies in diffusion chambers also can give rise to multipotential hemopoietic cells.


Blood ◽  
1985 ◽  
Vol 66 (3) ◽  
pp. 686-689 ◽  
Author(s):  
E Niskanen ◽  
HE Wyandt

Abstract Culture of a mixture of bone marrow cells with and without T6 chromosome marker in diffusion chambers in mice yielded colonies (CFU- DG) containing cells of a single karyotype, suggesting clonality. Injection of individual CFU-DG colonies into lethally irradiated mice resulted in increased spleen colony formation on day 12 (CFU-S). The possibility of endogenous origin was excluded by demonstrating the presence of T6 marker in both CFU-DG and CFU-S colonies in karyotypically normal hosts. These findings suggest that the cells giving rise to granulocytic colonies in diffusion chambers also can give rise to multipotential hemopoietic cells.


2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Bolun Wang ◽  
Haohui Guo ◽  
Tianxiang Geng ◽  
Kening Sun ◽  
Liang Zhang ◽  
...  

Abstract Aseptic loosening following periprosthetic osteolysis is the primary complication that limits the lifetime of total joint arthroplasty (TJA). The wear particles trigger a chronic inflammation response in the periprosthetic tissue and turn over the bone balance to bone resorption. The present study aimed to investigate the possible effect and mechanism of strontium ranelate (SR), a clinically safe drug for osteoporosis, on particle-induced periprosthetic osteolysis. Thirty-six female C57BL/6j mice underwent tibial Ti-nail implantation to establish an animal model of aseptic loosening. After 12 weeks, micro-CT results showed that strontium ranelate could inhibit periprosthetic bone resorption. In vitro, Ti particles were used to stimulate RAW264.7 cell line to collect conditioned medium, and co-culture MC3T3-E1 cell line with conditioned medium to establish a cell model of aseptic loosening. The results of alkaline phosphatase (ALP) detection, immunofluorescence, and flow cytometry demonstrated that strontium ranelate could regulate the expression of OPG/RANKL, promote differentiation and mineralization, and inhibit apoptosis in osteoblasts. Moreover, we revealed that SR’s exerted its therapeutic effect by down-regulating sclerostin, thereby activating the Wnt/β-catenin signal pathway. Therefore, this research suggests that strontium ranelate could be a potential drug for the prevention and treatment of particle-induced aseptic loosening post-TJA.


Blood ◽  
1964 ◽  
Vol 23 (1) ◽  
pp. 1-17 ◽  
Author(s):  
D. G. OSMOND ◽  
N. B. EVERETT

Abstract Radioautography with tritiated thymidine has been utilized to examine the turnover rate and origin of small lymphocytes in the bone marrow of the guinea-pig. Very few marrow lymphocytes were initially labeled by a single injection of tritiated thymidine, but thereafter the number of labeled lymphocytes rapidly increased to high maximum levels at 3 days. Analysis of the labeling curves and grain counts indicates that the population of marrow lymphocytes is maintained in a dynamic steady state with an average turnover time of 3 days or less. Suspensions of bone marrow cells were isolated from the circulation within intraperitoneal diffusion chambers after short-term labeling with tritiated thymidine in vivo. Although very few small lymphocytes were labeled when introduced into the diffusion chambers, a considerable percentage became labeled during the subsequent culture period. Tritiated thymidine was also administered intravenously whilst excluded from one hind limb by the application of an occlusive compression bandage for 20 minutes. Very few labeled small lymphocytes were found after 72 hours in the tibial marrow of the initially occluded limb, whereas the normal high percentage was labeled in the control tibial marrow. These experiments do not demonstrate any large-scale influx of small lymphocytes from the blood stream into the marrow parenchyma. They suggest that newly formed small lymphocytes appear in the marrow as a result of the division of locally situated precursor cells, but the mechanism of intramedullary lymphocytopoiesis is uncertain. "Transitional" cells, intermediate in morphology between blast cells and small lymphocytes, synthesize DNA and are actively proliferative, but they do not appear to account fully for the rate of lymphocyte production. Certain large, undifferentiated labeled cells appeared in the bone marrow as a result of hematogenous migration. Some implications of these findings are discussed.


Blood ◽  
1983 ◽  
Vol 61 (4) ◽  
pp. 740-745 ◽  
Author(s):  
E Niskanen ◽  
A Kallio ◽  
PP McCann ◽  
DG Baker

Abstract Under the influence of a selective irreversible inhibitor of ornithine decarboxylase (ODC), DL-alpha-difluoromethylornithine (DFMO), early hematopoiesis was enhanced. In the bone marrow, the absolute number of cells that give rise to spleen colonies in lethally irradiated mice (CFU-S), granulocytic colonies in diffusion chambers in mice (CFU-DG), and granulocyte-monocyte colonies in agar in vitro (CFU-C) was increased 2–4 fold. This could be abrogated by administration of putrescine, confirming the association of the stimulatory effect with polyamine biosynthesis most likely via depression of ornithine decarboxylase activity and subsequent synthesis of putrescine. Analysis of cell cycle characteristics by 3H-TdR suicide technique demonstrated that the proportion of CFU-S, CFU-DG, and CFU-C in S-phase was significantly increased. Additionally, the stimulatory effect was reflected by enhanced colony formation in diffusion chambers implanted intraperitoneally in mice receiving DFMO. This could also be eliminated by treatment of the host animal with putrescine, again suggesting that polyamine biosynthesis plays an important role at the early stages of hematopoiesis in vivo. Effect of DFMO on colony formation in vitro (CFU- C) was inhibitory and not reversible with putrescine. It could be partially eliminated by aminoguanidine, which neutralizes diamine oxidase present in fetal calf serum used in the CFU-C assay. These data suggest that the effect of DFMO in vitro was nonspecific.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3701-3701 ◽  
Author(s):  
Kun Xu ◽  
Keith V. Holubec ◽  
John E. Love ◽  
Thomas J. Goodwin ◽  
Arthur J. Sytkowski

Abstract Humans and experimental animals subjected to microgravity, such as experienced during space flight, exhibit alterations in erythropoiesis, including changes in red blood cell morphology, survival and a reduction in red blood cell mass. Some of these alterations have been attributed to a disruption of normal in vivo erythropoietin physiology. However, human bone marrow cells grown on orbit showed a profound reduction in the number of erythroid cells, suggesting a cellular component. We now report the results of a study carried out on orbit on the International Space Station (ISS UF-1) in which an erythroid cell line was induced to differentiate. Rauscher murine erythroleukemia cells, a continuous cell line that can undergo erythropoietin (Epo)- or chemical-induced differentiation similar to normal erythropoiesis, were cultured for 6 days either in microgravity on board the ISS or on earth and then for 3 days in the absence or presence of 50 U Epo/ml or 0.7% dimethyl sulfoxide (DMSO). The cells were fixed, stored on orbit and returned to earth for study. Compared to ground-based controls, cells cultured in microgravity exhibited a greater degree of differentiation (hemoglobinization) (p<0.01). However, TER-119 antigen, a specific marker of the late stages of murine erythroid differentiation, was not detected on the surface of cells grown in microgravity. A significantly higher percentage (p<0.05) of cell clusters formed on orbit, whereas actin content appeared reduced. Furthermore, there was a more profound loss of actin stress fibers in microgravity following Epo or DMSO treatment. These results demonstrate abnormal erythropoiesis in vitro in microgravity and are consistent with the hypothesis that erythropoiesis is affected by gravitational forces at the cellular level.(Supported by NASA Grants NAG9-1368 and NAG2-1592 to AJS)


Blood ◽  
1977 ◽  
Vol 49 (3) ◽  
pp. 415-424
Author(s):  
N Jacobsen

Normal human bone marrow contains cells capable of forming colonies of hemopoietic cells in fibrin clots in diffusion chambers implanted intraperitoneally (i.p.) into irradiated mice. The present paper describes the proliferation of such colony-forming units (CFUD) in cultures in vivo. Cells harvested from diffusion chambers after 1–14 days of culture in 450-R irradiated mice contained CFUD, which formed neutrophilic, eosinophilic, or megakaryocytic colonies when tested by secondary culture in fibrin clot chambers. When bone marrow was precultured in irradiated mice at a concentration of 10(6) cells per chamber, an initial fall in the number of neutrophilic CFUD was observed. This decrease was followed by an increase to a maximum at day 2, and then a secondary decrease. The number of neutrophilic CFUD recovered after 2 days of preculture in irradiated mice varied between 60% and 250% of the number present before preculture. Preculture in nonirradiated mice resulted in a significantly lower recovery of neutrophilic CFUD. In vitro treatment of bone marrow cells with hydroxyurea (OHU) after 2 days of preculture in irradiated mice resulted in a 68% +/- 5% reduction in the number of neutrophilic CFUD. In contrast, OHU had no similar effect on precultures from nonirradiated mice. Both the recovery and sensitivity to OHU of eosinophilic CFUD were independent of host irradiation. Similarly, no effect of host irradiation on the recovery or the 3H-thymidine (3HTdR) labeling index of morphologically recognizable granulocytic cells was observed at day 2. The data suggest an effect of humoral host factor(s) on the proliferation of early precursor cells, which are or become committed to differentiate into the neutrophilic pathway in diffusion chambers.


Blood ◽  
1981 ◽  
Vol 57 (2) ◽  
pp. 298-304
Author(s):  
K Harigaya ◽  
EP Cronkite ◽  
ME Miller ◽  
G Moccia

Normal and plethoric bone marrow cells were grown in plasma clot diffusion chambers (PCDC) implanted into the peritoneum of normal mice or mice submitted to 7 her of hypoxia (23,000 ft) daily, on a single day or on 2 consecutive days at different times after implantation of the PCDC's. Daily discontinuous hypoxia (DDH) produced more 6-day bursts than other treatments. Hypoxia on days 1 and 2 after implantation was nearly as effective as DDH on day-6 bursts. Later bouts of hypoxia or a singly hypoxic exposure on day 1 or 2 was less effective. Erythropoietin (Ep) levels were measured by bioassay on both diffusion chamber (DC) contents and serum. Serum Ep levels peaked at 160 mU/ml after a 7-hr hypoxic exposure while the DC content Ep levels were in the nondetectable range (less than 50 mU/ml). The data implies that either higher than normal Ep levels or a companion molecules (s) produced by hypoxia are required for 1–2 days early in the culture period of force an increasing number of BFU-d-e down the erythrocytic pathway and thus increase red cell production at times of need in vivo.


2019 ◽  
Vol 9 (9) ◽  
pp. 1106-1111
Author(s):  
Xiao-Bo Wang ◽  
Le-Ping Yan ◽  
Li-Hua Yuan ◽  
Bo Lu ◽  
Dong-Jun Lin ◽  
...  

This study firstly aimed to reveal the gene expression differences of CIAPIN1 between myelomas cells from bone marrow cells of multiple myeloma patients and normal human, and subsequently investigate the regulation role of this gene on tumorigenicity ability of multiple myeloma (MM) cell line U266 via in vitro colony formation and in vivo xenograft studies. RT-PCR results obtained from 18 MM patients and 10 health people showed that the expression of CIAPIN1 gene was 4 times higher in normal human compared to MM patients. Besides, CIAPIN1 siRNA (si-CIAPIN1) transfected U266 cells presented higher proliferation ratio and superior colony forming ability than U266 cells and U266 cells transfected with non-coding siRNA (controls) evaluated by CCK8 test and soft agar colony formation assay, respectively. In a mice MM xenograft model, the si-CIAPIN1 transfected U266 cells induced the biggest tumor compared to the controls. Furthermore, CIAPIN1 overexpressed U266 cells were developed and compared with the si-CIAPIN1 transfected U266 cells to study the role of CIAPIN1 in the production of apoptosis related proteins in U266 cells. Results indicated that CIAPIN1 facilitated apoptosis promoting proteins expression in U266 cells, such as upregulation of BAX, BAK, Bcl-xs and BIM, and downregulation of p38, PKC, Bcl-2 and Bcl-xl proteins. Therefore, CIAPIN1 can be a potential suppression target gene in multiple myeloma.


Sign in / Sign up

Export Citation Format

Share Document