scholarly journals Mechanism of thrombin binding to endothelial cells

Blood ◽  
1983 ◽  
Vol 61 (2) ◽  
pp. 368-372
Author(s):  
PT Bauer ◽  
R Machovich ◽  
P Aranyi ◽  
KG Buki ◽  
E Csonka ◽  
...  

The interaction of human alpha-thrombin with mini-pig aortic endothelial cells was studied using 125I-labeled enzyme. Equilibrium between bound and free thrombin was attained within 1 min, and the Klotz-Hunston equations indicated two populations of binding sites. Approximately 30,000 sites/cell belonged to the high-affinity class with a Kd of about 3 x 10(-8) M. Modification of two lysine residues of thrombin with pyridoxal 5′-phosphate (PLP2-thrombin) destroyed the high- affinity binding and about three-fourths of the low-affinity bindings. When the lysine residue of thrombin involved in heparin binding was protected with heparin against chemical modification (PLP-thrombin), the modified enzyme remained similar to the native one with respect to cellular binding, with some loss of low-affinity binding only. Heparin, in a tenfold molar excess to enzyme, inhibited the binding of the native as well as the PLP-thrombin, whereas it did not influence the interaction between PLP2-thrombin and the cell. Since heparin might interfere with both the enzyme and the cell, the binding of heparin to endothelial cells was also examined. The results revealed that 3H- heparin also bound to cells. This binding was characterized by a Kd of 3 x 10(-7) M, approximately 10(6) sites/cell. Furthermore, thrombin bound to endothelial cells was released by antithrombin III. On the basis of these and other data in the literature, a model is proposed for the mechanism of the binding of thrombin to endothelial cells.

Blood ◽  
1983 ◽  
Vol 61 (2) ◽  
pp. 368-372 ◽  
Author(s):  
PT Bauer ◽  
R Machovich ◽  
P Aranyi ◽  
KG Buki ◽  
E Csonka ◽  
...  

Abstract The interaction of human alpha-thrombin with mini-pig aortic endothelial cells was studied using 125I-labeled enzyme. Equilibrium between bound and free thrombin was attained within 1 min, and the Klotz-Hunston equations indicated two populations of binding sites. Approximately 30,000 sites/cell belonged to the high-affinity class with a Kd of about 3 x 10(-8) M. Modification of two lysine residues of thrombin with pyridoxal 5′-phosphate (PLP2-thrombin) destroyed the high- affinity binding and about three-fourths of the low-affinity bindings. When the lysine residue of thrombin involved in heparin binding was protected with heparin against chemical modification (PLP-thrombin), the modified enzyme remained similar to the native one with respect to cellular binding, with some loss of low-affinity binding only. Heparin, in a tenfold molar excess to enzyme, inhibited the binding of the native as well as the PLP-thrombin, whereas it did not influence the interaction between PLP2-thrombin and the cell. Since heparin might interfere with both the enzyme and the cell, the binding of heparin to endothelial cells was also examined. The results revealed that 3H- heparin also bound to cells. This binding was characterized by a Kd of 3 x 10(-7) M, approximately 10(6) sites/cell. Furthermore, thrombin bound to endothelial cells was released by antithrombin III. On the basis of these and other data in the literature, a model is proposed for the mechanism of the binding of thrombin to endothelial cells.


Blood ◽  
1990 ◽  
Vol 75 (12) ◽  
pp. 2335-2342 ◽  
Author(s):  
AP Kowalczyk ◽  
RH Tulloh ◽  
PJ McKeown-Longo

Abstract Endothelial cells in vivo form the interface between the vascular and interstitial compartments and are strategically located to mediate vascular permeability and hemostasis. One mechanism endothelial cells use to maintain a nonthrombogenic surface is to polarize basement membrane constituents to the basolateral cell surface. In the present study, we began characterization of the mechanisms used by endothelial cells in the assembly of a subcellular fibronectin matrix. Immunofluorescence microscopy was used to localize extracellular matrix fibronectin in endothelial cell cultures. In contrast to preconfluent and newly confluent cultures, post-confluent cultures assembled a fibronectin matrix that was restricted to the basolateral cell surface. To determine if endothelial cells polarize fibronectin secretion, Millicell culture inserts were used to distinguish proteins secreted from apical and basal surfaces. Preconfluent and newly confluent cultures secreted fibronectin equally into apical and basal media. In contrast, post-confluent endothelial cells secreted fibronectin preferentially into the basal chamber. The degree to which fibronectin secretion was polarized varied with time in culture and with the ability of the monolayers to act as a barrier to the movement of 125I- fibronectin from the apical to basal chamber. In addition, high affinity binding sites for exogenous 125I-fibronectin were found to be present on the basolateral, but not apical, surface of post-confluent endothelial monolayers. These results indicate that subendothelial matrix assembly correlates with polarized fibronectin secretion, culture confluence, and expression of high affinity binding sites for fibronectin on the basolateral cell surface.


Blood ◽  
1990 ◽  
Vol 75 (12) ◽  
pp. 2335-2342
Author(s):  
AP Kowalczyk ◽  
RH Tulloh ◽  
PJ McKeown-Longo

Endothelial cells in vivo form the interface between the vascular and interstitial compartments and are strategically located to mediate vascular permeability and hemostasis. One mechanism endothelial cells use to maintain a nonthrombogenic surface is to polarize basement membrane constituents to the basolateral cell surface. In the present study, we began characterization of the mechanisms used by endothelial cells in the assembly of a subcellular fibronectin matrix. Immunofluorescence microscopy was used to localize extracellular matrix fibronectin in endothelial cell cultures. In contrast to preconfluent and newly confluent cultures, post-confluent cultures assembled a fibronectin matrix that was restricted to the basolateral cell surface. To determine if endothelial cells polarize fibronectin secretion, Millicell culture inserts were used to distinguish proteins secreted from apical and basal surfaces. Preconfluent and newly confluent cultures secreted fibronectin equally into apical and basal media. In contrast, post-confluent endothelial cells secreted fibronectin preferentially into the basal chamber. The degree to which fibronectin secretion was polarized varied with time in culture and with the ability of the monolayers to act as a barrier to the movement of 125I- fibronectin from the apical to basal chamber. In addition, high affinity binding sites for exogenous 125I-fibronectin were found to be present on the basolateral, but not apical, surface of post-confluent endothelial monolayers. These results indicate that subendothelial matrix assembly correlates with polarized fibronectin secretion, culture confluence, and expression of high affinity binding sites for fibronectin on the basolateral cell surface.


1994 ◽  
Vol 72 (03) ◽  
pp. 465-474 ◽  
Author(s):  
Neelesh Bangalore ◽  
William N Drohan ◽  
Carolyn L Orthner

SummaryActivated protein C (APC) is an antithrombotic serine proteinase having anticoagulant, profibrinolytic and anti-inflammatory activities. Despite its potential clinical utility, relatively little is known about its clearance mechanisms. In the present study we have characterized the interaction of APC and its active site blocked forms with human umbilical vein endothelial cells (HUVEC). At 4° C 125I-APC bound to HUVEC in a specific, time dependent, saturable and reversible manner. Scatchard analysis of the binding isotherm demonstrated a Kd value of 6.8 nM and total number of binding sites per cell of 359,000. Similar binding isotherms were obtained using radiolabeled protein C (PC) zymogen as well as D-phe-pro-arg-chloromethylketone (PPACK) inhibited APC indicating that a functional active site was not required. Competition studies showed that the binding of APC, PPACK-APC and PC were mutually exclusive suggesting that they bound to the same site(s). Proteolytic removal of the N-terminal γ-carboxyglutamic acid (gla) domain of PC abolished its ability to compete indicating that the gla-domain was essential for cell binding. Surprisingly, APC binding to these cells appeared to be independent of protein S, a cofactor of APC generally thought to be required for its high affinity binding to cell surfaces. The identity of the cell binding site(s), for the most part, appeared to be distinct from other known APC ligands which are associated with cell membranes or extracellular matrix including phospholipid, thrombomodulin, factor V, plasminogen activator inhibitor type 1 (PAI-1) and heparin. Pretreatment of HUVEC with antifactor VIII antibody caused partial inhibition of 125I-APC binding indicating that factor VIII or a homolog accounted for ∼30% of APC binding. Studies of the properties of surface bound 125I-APC or 125I-PC and their fate at 4°C compared to 37 °C were consistent with association of ∼25% of the initially bound radioligand with an endocytic receptor. However, most of the radioligand appeared not to be bound to an endocytic receptor and dissociated rapidly at 37° C in an intact and functional state. These data indicate the presence of specific, high affinity binding sites for APC and PC on the surface of HUVEC. While a minor proportion of binding sites may be involved in endocytosis, the identity and function of the major proportion is presently unknown. It is speculated that this putative receptor may be a further mechanisms of localizing the PC antithrombotic system to the vascular endothelium.


Sign in / Sign up

Export Citation Format

Share Document