scholarly journals Surface-dependent reactions of the vitamin K-dependent enzyme complexes

Blood ◽  
1990 ◽  
Vol 76 (1) ◽  
pp. 1-16 ◽  
Author(s):  
KG Mann ◽  
ME Nesheim ◽  
WR Church ◽  
P Haley ◽  
S Krishnaswamy

Abstract During the past 20 years contributions from many laboratories have led to the development of isolation procedures, delineation of primary structures, and more recently, to the expression of recombinant proteins associated with the coagulation cascade. In general, studies of coagulation proteins under defined conditions have demonstrated the prescience of Davie and Ratnoff and MacFarlane in their proposals of the coagulation cascade. The more recent discovery of thrombomodulin by Esmon et al has led to the identification and characterization of components of the vitamin K-dependent anticoagulant pathway. In this review we have attempted to analyze and compare the functional properties of each of the vitamin K-dependent enzyme complexes associated with the procoagulant and anticoagulant phases of blood clotting. Although dissimilarities exist, the vitamin K-dependent complexes have analogous requirements and appear to function with a common general mode of organization. Membrane-bound cofactors serve as anchoring sites for the appropriate membrane-binding enzymes. This process localizes the complex on the membrane surface and increases the catalytic efficiency for substrate utilization. Complex formation provides extraordinary improvements in the catalytic efficiency for the complexes as compared with their soluble enzyme components. Membrane- bound complexes provide a mechanism that can be regulated at a site by membrane presentation, zymogen activation, and cofactor activation or presentation. The kinetic constants obtained for the various coagulation reactions determined in vitro provide some insights into how these pathways may function in vivo. The catalytic efficiency (kcat/Km) for factor X activation by factor VIIIa/factor IXa is far in excess of the catalytic efficiency of activation of factor X by tissue factor/factor VIIa (Table 3). This may provide a rational interpretation for the observation that patients with hemophilia A and B bleed even though they appear to have an alternative pathway to factor X activation. In addition, tissue factor is not ordinarily presented by the vascular tissue that has direct access to blood. However, it appears that extravascular constitutive tissue factor is available once the blood vessel becomes disrupted. The efforts to identify the initiating reactions of the blood coagulation process have not been unambiguously successful. We conclude that factor VII is most likely a zymogen, just as are the other proenzymes of the blood clotting process. In addition, it is difficult to rationalize the importance of the intrinsic pathway of coagulation involving factor XII, prekallikrein, and high molecular weight kininogen since the congenital absence of any one of these factors does not result in abnormal bleeding.

Blood ◽  
1990 ◽  
Vol 76 (1) ◽  
pp. 1-16 ◽  
Author(s):  
KG Mann ◽  
ME Nesheim ◽  
WR Church ◽  
P Haley ◽  
S Krishnaswamy

During the past 20 years contributions from many laboratories have led to the development of isolation procedures, delineation of primary structures, and more recently, to the expression of recombinant proteins associated with the coagulation cascade. In general, studies of coagulation proteins under defined conditions have demonstrated the prescience of Davie and Ratnoff and MacFarlane in their proposals of the coagulation cascade. The more recent discovery of thrombomodulin by Esmon et al has led to the identification and characterization of components of the vitamin K-dependent anticoagulant pathway. In this review we have attempted to analyze and compare the functional properties of each of the vitamin K-dependent enzyme complexes associated with the procoagulant and anticoagulant phases of blood clotting. Although dissimilarities exist, the vitamin K-dependent complexes have analogous requirements and appear to function with a common general mode of organization. Membrane-bound cofactors serve as anchoring sites for the appropriate membrane-binding enzymes. This process localizes the complex on the membrane surface and increases the catalytic efficiency for substrate utilization. Complex formation provides extraordinary improvements in the catalytic efficiency for the complexes as compared with their soluble enzyme components. Membrane- bound complexes provide a mechanism that can be regulated at a site by membrane presentation, zymogen activation, and cofactor activation or presentation. The kinetic constants obtained for the various coagulation reactions determined in vitro provide some insights into how these pathways may function in vivo. The catalytic efficiency (kcat/Km) for factor X activation by factor VIIIa/factor IXa is far in excess of the catalytic efficiency of activation of factor X by tissue factor/factor VIIa (Table 3). This may provide a rational interpretation for the observation that patients with hemophilia A and B bleed even though they appear to have an alternative pathway to factor X activation. In addition, tissue factor is not ordinarily presented by the vascular tissue that has direct access to blood. However, it appears that extravascular constitutive tissue factor is available once the blood vessel becomes disrupted. The efforts to identify the initiating reactions of the blood coagulation process have not been unambiguously successful. We conclude that factor VII is most likely a zymogen, just as are the other proenzymes of the blood clotting process. In addition, it is difficult to rationalize the importance of the intrinsic pathway of coagulation involving factor XII, prekallikrein, and high molecular weight kininogen since the congenital absence of any one of these factors does not result in abnormal bleeding.


1999 ◽  
Vol 82 (08) ◽  
pp. 209-217 ◽  
Author(s):  
Patrick Celie ◽  
Joost Kolkman ◽  
Peter Lenting ◽  
Koen Mertens

IntroductionThe activation of factor X is one of the steps in the coagulation cascade that is driven by the assembly of an activated serine protease with a membrane-bound cofactor. In the initial phase of coagulation, factor X is activated by the complex of activated factor VII (factor VIIa) and tissue factor. Subsequently, during the so-called propagation phase, factor X activation is catalyzed by the complex of activated factor IX (factor IXa) and activated factor VIII (factor VIIIa). In these complexes, factor VIIa and factor IXa are the factor X-activating enzymes, whereas tissue factor and factor VIIIa serve as non-enzymatic cofactors.1 Factors VIIa and IXa are highly homologous to other cofactor-dependent enzymes, such as activated factor X (factor Xa) and activated protein C, both in amino acid sequence, domain organization, and three-dimensional structure.2 Factor VIIa and IXa further share low or negligible activity towards their natural substrate factor X, unless in complex with their physiological cofactors.Although tissue factor and factor VIIIa serve similar roles as biological amplifiers, they are structurally different. Tissue factor is a small, transmembrane protein with an extracellular part comprising 219 amino acids. Factor VIII is much larger (2,332 amino acids), circulates in plasma, and requires proteolytic processing to exert its biological activity.3 When cofactors are assembled with their respective enzymes, a dramatic increase in enzymatic activity occurs. The underlying molecular mechanism, however, remains poorly understood.During the past few years, remarkable progress has been made in understanding the molecular details of enzyme-cofactor assembly within the coagulation cascade. Crystallography has provided high-resolution structures of tissue factor4 and the various cofactor-dependent coagulation enzymes.2 Moreover, the crystal structure of the factor VIIa—tissue factor complex has been resolved and has allowed the identification of the molecular sites involved in enzyme-cofactor interaction.5,6 Such details are still lacking, however, for the factor IXa—factor VIIIa complex. Current views are derived from three-dimensional models generated by homology modeling based on structurally-related proteins, such as nitrite reductase,7 ceruloplasmin,8 and galactose oxidase.9 Despite their inherent limitations, these models greatly facilitate the interpretation of previous functional studies on factor X activation. As such, the availability of molecular models may be considered an important step toward resolving the structure of the factor IXa—factor VIIIa complex and understanding the role of complex assembly and defects thereof. This chapter provides an overview of the current developments in this field.


2007 ◽  
Vol 35 (3) ◽  
pp. 555-558 ◽  
Author(s):  
A. Amour ◽  
J. Hutchinson ◽  
A.M. Ruiz Avendaño ◽  
S. Ratcliffe ◽  
E. Alvarez ◽  
...  

Coagulation proteases are involved in a highly orchestrated proteolytic cascade which is essential for haemostasis and blood clotting. In particular, the initiator of the coagulation cascade, Factor VIIa, binds to its cofactor, tissue factor, and its substrate, Factor X, via exosite interactions to form a ternary catalytic complex named extrinsic Xase. These exosite interactions have also been shown to allosterically induce the active conformation of the catalytic site of Factor VIIa. We have developed a direct continuous fluorescence polarization-based extrinsic Xase assay, which has been used to screen in excess of 1 million structurally diverse low-molecular-mass compounds as a potential starting point for the development of anticoagulants. The primary screen hits were categorized with deconvolution assays into either active-site or exosite inhibitors. The latter category of hits displayed both competitive and uncompetitive modalities of inhibition with respect to Factor X activation. An uncompetitive mechanism of action is of particular interest as it offers a hypothetical inhibitory advantage in the context of inhibiting a proteolytic cascade such as the blood coagulation pathway.


1968 ◽  
Vol 20 (01/02) ◽  
pp. 078-087 ◽  
Author(s):  
H. C Hemker ◽  
A. D Muller

SummaryPIVKA, the circulating anticoagulant protein found in vitamin K deficiency can, on kinetical grounds, be recognized as an analogue of factor X. The existence of analogues of other vitamin K-dependent clotting factors cannot be ruled out, but need not be assumed to explain the experimental results.


Blood ◽  
2006 ◽  
Vol 107 (3) ◽  
pp. 980-986 ◽  
Author(s):  
Xin Huang ◽  
Wei-Qun Ding ◽  
Joshua L. Vaught ◽  
Roman F. Wolf ◽  
James H. Morrissey ◽  
...  

AbstractTissue factor (TF) initiates blood coagulation, but its expression in the vascular space requires a finite period of time. We hypothesized that targeting exogenous tissue factor to sites of vascular injury could lead to accelerated hemostasis. Since phosphatidylserine (PS) is exposed on activated cells at sites of vascular injury, we cloned the cDNA for a chimeric protein consisting of the extracellular domain of TF (called soluble TF or sTF) and annexin V, a human PS-binding protein. Both the sTF and annexin V domains had ligand-binding activities consistent with their native counterparts, and the chimera accelerated factor X activation by factor VIIa. The chimera exhibited biphasic effects upon blood coagulation. At low concentrations it accelerated blood coagulation, while at higher concentrations it acted as an anticoagulant. The chimera accelerated coagulation in the presence of either unfractionated or low-molecular-weight heparins more potently than factor VIIa and shortened the bleeding time of mice treated with enoxaparin. The sTF-annexin V chimera is a targeted procoagulant protein that may be useful in accelerating thrombin generation where PS is exposed to the vasculature, such as may occur at sites of vascular injury or within the vasculature of tumors.


1963 ◽  
Vol 43 (2) ◽  
pp. 344-352 ◽  
Author(s):  
J. H. Linton ◽  
B. P. Goplen ◽  
J. M. Bell ◽  
L. B. Jaques

In one experiment 3 steers, 4 bull calves and 4 wether lambs were orally administered 2 milligrams dicoumarol per kilogram body weight and blood-clotting time measurements were made over a 4-day period. All animals responded to the dicoumarol but differences were evident between sheep and cattle; sheep were apparently more tolerant of the drug.The ’one-stage prothrombin’ test was more reliable and sensitive than the clotting tests employed for factor VII, factor X and prothrombin concentration.In a second experiment, 16 ewes in late pregnancy were fed rations containing 0 to 30 p.p.m. of synthetic dicoumarol and vitamin K3 as a cross treatment. Evidence of abnormal clotting power of ewe blood was observed in ewes fed diets containing 10 p.p.m. of dicoumarol. There was some indication of cumulative effects at this level after 32 days on test. At intake levels of 20 and 30 p.p.m. clotting times were affected more markedly and some ewes exhibited extended bleeding times after 2 to 4 weeks on test. No unusual hemorrhaging occurred at parturition. In general, the lambs’ blood did not reflect the pre- or post-partum dicoumarol intake of their mothers but a few lambs, as in the case of the ewes, exhibited low tolerance for dicoumarol without showing much disturbance in terms of clotting time. A large single oral dose of menadione sodium bisulphite demonstrated the effectiveness of vitamin K3 as an antidote. However, vitamin K3 as a ration supplement at 12 milligrams per pound feed failed to protect ewes against the effects of dicoumarol.


Blood ◽  
1985 ◽  
Vol 65 (1) ◽  
pp. 218-226 ◽  
Author(s):  
LV Rao ◽  
SP Bajaj ◽  
SI Rapaport

Abstract We have studied factor VII activation by measuring the ratio of factor VII clotting to coupled amidolytic activity (VIIc/VIIam) and cleavage of 125I-factor VII. In purified systems, a low concentration of Xa or a higher concentration of IXa rapidly activated 125I-factor VII, yielding a VIIc/VIIam ratio of 25 and similar gel profiles of heavy and light chain peaks of VIIa. On further incubation, VIIa activity diminished and a third 125I-peak appeared. When normal blood containing added 125I- factor VII was clotted in a glass tube, the VIIc/VIIam ratio rose fivefold, and 20% of the 125I-factor VII was cleaved. Clotting normal plasma in an activated partial thromboplastin time (APTT) system yielded a VIIc/VIIam ratio of 25 and over 90% cleavage of 125I-factor VII. Clotting factor XII-deficient plasma preincubated with antibodies to factor X in an APTT system with added XIa yielded a VIIc/VIIam ratio of 19 and about 60% cleavage, which indicates that IXa, at a concentration achievable in plasma, can effectively activate factor VII. Clotting normal plasma with undiluted tissue factor yielded a VIIc/VIIam ratio of 15 to 20 and 60% cleavage of 125I-factor VII, whereas clotting plasma with diluted tissue factor activated factor VII only minimally. We conclude that both Xa and IXa can function as significant activators of factor VII in in vitro clotting mixtures but believe that only small amounts of factor VII may be activated in vivo during hemostasis.


Blood ◽  
1979 ◽  
Vol 53 (3) ◽  
pp. 366-374 ◽  
Author(s):  
LR Zacharski ◽  
R Rosenstein

Abstract The coagulant of normal human saliva has been identified as tissue factor (thromboplastin, TF) by virtue of its ability to cause rapid coagulation in plasmas deficient in first-stage coagulation factors and to activate factor x in the presence of factor VII and by virtue of the fact that its activity is expressed only in the presence of factor VII and is inhibited by an antibody to TF. The TF is related to cells and cell fragments in saliva. Salivary TF activity has been found to be significantly reduced in patients taking warfarin. The decline in TF activity during induction of warfarin anticoagulation occurs during the warfarin-induced decline in vitamin-K-dependent clotting factor activity, as judged by the prothrombin time. The decrease in TF activity is not related to a reduction in salivary cell count or total protein content or to a direct effect of warfarin on the assay. It is hypothesized that the mechanism by which warfarin inhibits TF activity may be related to the mechanism by which it inhibits expression of the activity of the vitamin-K-dependent clotting factors. Inhibition of the TF activity may be involved in the antithrombotic effect of warfarin.


Sign in / Sign up

Export Citation Format

Share Document