sodium bisulphite
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 12)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Zhe Jiang ◽  
Yiyi Zhang ◽  
Nan Zhang ◽  
Qiang Wang ◽  
Ping Wang ◽  
...  

2021 ◽  
Vol 25 (06) ◽  
pp. 1321-1330
Author(s):  
Wajeeha Yaseen

The menadione sodium bisulphite (MSB) is hydrophilic and has been suggested a defensive molecule against different biotic and abiotic stresses. Cadmium (Cd) is a highly mobile element and even its minute amount causes toxicity in different organisms including plants. This experiment was conducted to elucidate whether seed priming with MSB could induce Cd tolerance in summer squash. The seed were primed with 0, 10 and 20 mM MSB and sown in pots filled with clean and dried sand saturated with Hoagland’s nutrients solution supplemented with different Cd concentrations (0 and 0.1 mM). The Cd stress reduced growth and contents of chlorophyll (Chl), osmoprotectants (soluble sugars, free amino acids, soluble proteins) and yield while increased oxidants such as hydrogen peroxide (H2O2) and malondialdehyde (MDA) and secondary metabolites (total phenolics and flavonoids). The Cd stress increased root and shoot Fe (4−18%, respectively) and Ca2+ (24−93%, respectively) concentration while decreased root and shoot Mg2+ concentration (31−39%, respectively). The summer squash transported Cd to shoot and compartmentalized it in the cells to avoid Cd toxicity. However, the plants raised from seed primed with MSB had higher contents of photosynthetic pigments (17−23% total Chl), secondary metabolites and osmoprotectants when grown under Cd stress. Further, MSB-priming attenuated the toxicity of Cd on nutrients acquisition and increased growth and yield in the summer squash. The MSB-priming reduced Cd uptake (84%) and also altered Cd compartmentalization at sub-cellular level, and mediated its accumulation in the cell wall and soluble fraction (vacuole) rather than in the chloroplasts and cell membranes. Overall, MSB-priming (10 mM) was much more effective and increased growth and yield of summer squash under Cd stress. © 2021 Friends Science Publishers


Author(s):  
KRISHNA KUMAR ◽  
Nitish Kumar ◽  
Amresh gupta ◽  
Arpita singh ◽  
Pandey Swarnima ◽  
...  

Sickle cell anemia is a common disease in Oman country. In this disease, sickle-shaped cells are formed. These cells interrupt blood vessels and cause a reduction in oxygen transportation. It was founded that henna (Lawsonia inermis) can prohibit the formation of sickle cells. The Lawsone (2-Hydroxy-1,4-Naphthoquinone) is the constituents of henna which is responsible for the anti-sickling activity, by increasing the oxygen affinity of red blood cells. Hena has the anti-sickling activity which is proved by incubating aqueous and methanolic henna extracts with sickle cell disease patient's whole blood. Then for reduction to oxygen tension 2%, sodium bisulphite was added. Therefore, the percentage of sickled cells to normal red blood cells was observed at 30 minutes intervals. Henna proved a delay in the sickling process in 84% of the tested samples. Both extracts(aqueous and methanolic henna) can delay sickling for about an hour.


2019 ◽  
Author(s):  
R.J. Nell ◽  
D. van Steenderen ◽  
N.V. Menger ◽  
T.J. Weitering ◽  
M. Versluis ◽  
...  

ABSTRACTEpigenetic regulation is important in human health and disease, but the exact mechanisms remain largely enigmatic. DNA methylation represents one well-studied aspect of epigenetic regulation, but is challenging to quantify accurately. In this study, we introduce a digital approach for the absolute quantification of the amount, density and allele-specificity of DNA methylation. Combining the efficiency of methylation-sensitive restriction enzymes with the quantitative power of digital PCR, DNA methylation is measured accurately without the need to treat the DNA samples with sodium bisulphite. Moreover, as the combination of PCR amplicon and restriction enzyme is flexible, the context and density of DNA methylation can be taken into account. Additionally, by extending the experimental setup to a multiplex digital PCR, methylation markers may be analysed together with physically linked genetic markers to determine the allele-specificity of the methylation. In-silico simulations demonstrated the mathematical validity of the experimental setup. Next the approach was validated in a variety of healthy and malignant reference samples in the context of RASSF1A promotor methylation. RASSF1A is an established tumour suppressor gene, that is aberrantly methylated in many human cancers. A dilution series of well-characterized reference samples cross-validated the sensitivity and dynamic range of the approach. Compared to conventional PCR based methods, digital PCR provides a more accurate and more sensitive approach to quantify DNA methylation. As no sodium bisulphite conversion is needed, also analysis of minute amounts of DNA could be carried out efficiently.


2019 ◽  
Vol 4 (2) ◽  
pp. 115
Author(s):  
Dhita Ariyanti ◽  
Muhammad Syaifuddin

<p>Indonesia is a country with abundant mining potential, one of it is gold (Au) which has a high economic value. Separation of gold metal from mineral rock consists of several methods, such as extraction, hydrometallurgy, and membrane emulsifier technology. These three methods produce different effectiveness of percentage recovery (%recovery), depend on the optimum conditions of each method and type of solvent. This study aims to separate the gold metal from mineral rocks through the hydrometallurgical method with an aeration-cyanidation solvent combination. Hidrometallurgy method is liquid extraction from ores. The test used is a qualitative test of SnCl<sub>2</sub> solution and characterization test with XRF. The results showed that the percentage of recovery (%recovery) of Au with aeration and cyanidation process for 24 hours was 92.8%. Aeration and cyanidation better than emulsifier membrane method and hydrometallurgy with sodium bisulphite, hydrogen peroxide, Cyanex 272 and NH<sub>4</sub>Cl 0.9 M.</p>


2019 ◽  
Vol 3 (2) ◽  
pp. 41 ◽  
Author(s):  
Osama Youssf ◽  
Reza Hassanli ◽  
Julie E. Mills ◽  
William Skinner ◽  
Xing Ma ◽  
...  

This research extensively investigates how to enhance the mechanical performance of Rubcrete, aiming to move this type of concrete from the laboratory research level to a more practical use by the concrete industry. The effects of many different mixing procedures, chemical pre-treatments on the rubber particles, and the use of fibre additives, have been investigated for their impact upon Rubcrete workability, compressive strength, tensile strength, and flexural strength. The mixing procedure variables included mixing time and mixing order. The rubber pre-treatments utilized chemicals such as Sodium Hydroxide (NaOH), Hydrogen Peroxide (H2O2), Sulphuric acid (H2SO4), Calcium Chloride (CaCl2), Potassium Permanganate (KMnO4), Sodium Bisulphite (NaHsO3), and Silane Coupling Agent. Soaking rubber particles in tap water, or running them through water before mixing, were also tried as a pre-treatment of rubber particles. In addition, the effects of fibre additives such as steel fibres, polypropylene fibres, and rubber fibres, were assessed. X-ray photoelectron spectroscopy (XPS) analysis was utilised to examine some of the pre-treated rubber particles. The results showed that doubling the net mixing time of all mix constituents together enhanced the Rubcrete slump by an average of 22%, and the compressive strength by up to 8%. Mixing rubber with dry cement before adding to the mix increased the compressive strength by up to 3%. Pre-treatment using water was more effective than other chemicals in enhancing the Rubcrete workability. Regardless of the treatment material type, the longer the time of the treatment, the more cleaning of rubber occurred. Significant Rubcrete flexural strength increase occurred when using 1.5% fibre content of both steel fibre and polypropylene fibre.


Sign in / Sign up

Export Citation Format

Share Document