scholarly journals Murine leukemia inhibitory factor enhances retroviral-vector infection efficiency of hematopoietic progenitors

Blood ◽  
1990 ◽  
Vol 76 (6) ◽  
pp. 1098-1103 ◽  
Author(s):  
FA Fletcher ◽  
DE Williams ◽  
C Maliszewski ◽  
D Anderson ◽  
M Rives ◽  
...  

Abstract We have investigated the in vitro effects of the cytokine leukemia inhibitory factor (LIF) on normal murine hematopoietic progenitors by measuring recovery and retroviral vector infection efficiency of 13-day posttransplant, spleen-colony-forming cell (CFU-S 13) in short-term culture. Up to a twofold increase in CFU-S13 recovery was observed, from 9.7 x 10(-5) cells in untreated controls to 17.8 to 19.5 x 10(-5) cells, depending on the concentration of LIF. Histologic analysis of spleen colonies from control and LIF-treated marrows demonstrated that there was no detectable alteration in the differentiative potential of CFU-S13. The efficiency of CFU-S13 infection was increased from 15% in untreated controls to 84% to 91% in LIF-treated marrows. Analysis of proviral integration sites in spleen colonies indicated that some CFU- S13 precursors were infected in the LIF-treated marrows.

Blood ◽  
1990 ◽  
Vol 76 (6) ◽  
pp. 1098-1103
Author(s):  
FA Fletcher ◽  
DE Williams ◽  
C Maliszewski ◽  
D Anderson ◽  
M Rives ◽  
...  

We have investigated the in vitro effects of the cytokine leukemia inhibitory factor (LIF) on normal murine hematopoietic progenitors by measuring recovery and retroviral vector infection efficiency of 13-day posttransplant, spleen-colony-forming cell (CFU-S 13) in short-term culture. Up to a twofold increase in CFU-S13 recovery was observed, from 9.7 x 10(-5) cells in untreated controls to 17.8 to 19.5 x 10(-5) cells, depending on the concentration of LIF. Histologic analysis of spleen colonies from control and LIF-treated marrows demonstrated that there was no detectable alteration in the differentiative potential of CFU-S13. The efficiency of CFU-S13 infection was increased from 15% in untreated controls to 84% to 91% in LIF-treated marrows. Analysis of proviral integration sites in spleen colonies indicated that some CFU- S13 precursors were infected in the LIF-treated marrows.


1991 ◽  
Vol 174 (4) ◽  
pp. 837-845 ◽  
Author(s):  
F A Fletcher ◽  
K A Moore ◽  
M Ashkenazi ◽  
P De Vries ◽  
P A Overbeek ◽  
...  

Low recovery and poor retroviral vector infection efficiency of hematopoietic stem cells has hindered application of gene therapy for disease affecting blood-forming tissues. Developmental restriction (or death) of stem cells during ex vivo infection has contributed to these difficulties. In these studies we report that the cytokine leukemia inhibitory factor (LIF) directly or indirectly supported the survival of hematopoietic stem cells during culture of bone marrow with vector-producing fibroblasts, resulting in efficient recovery of stem cells able to compete for engraftment in irradiated recipient animals. The infection efficiency of hematopoietic stem cells recovered from these cultures was approximately 80%; and all recipients (20/20) of the LIF-treated marrow were stably engrafted with the progeny of provirus-bearing stem cells. Expression of vector-encoded human adenosine deaminase (hADA) was detected in all recipients at levels averaging 15-50% of endogenous murine ADA in all their hematolymphoid tissues. Survival of stem cells in untreated cultures was approximately 10% of that observed from LIF-treated cultures, resulting in poor engraftment of recipient animals with transplanted cells. The infection efficiency of the few stem cells recovered from untreated cultures, however, was high (approximately 80%), suggesting that LIF did not have an effect on infection efficiency per se, but acted at the level of stem cell survival. Consistent with the poor engraftment observed in the control animals, expression of vector-encoded ADA was only approximately 4-20% of the endogenous levels. These results support the postulated role of LIF as a regulator of hematopoiesis and suggest that cytokine stimulation can positively affect inefficient retroviral vector transduction in hematopoietic stem cells.


2006 ◽  
Vol 164 ◽  
pp. S110-S111
Author(s):  
Maria Barca ◽  
Anne Marie Ciobanu ◽  
Dan Balalau ◽  
Daniela Luiza Baconi ◽  
Mihaela Ilie ◽  
...  

2008 ◽  
Vol 102 (1) ◽  
pp. 23-27 ◽  
Author(s):  
Paulo Serafini ◽  
André M. Rocha ◽  
Cyntia T. Osório ◽  
Ismael da Silva ◽  
Eduardo L. Motta ◽  
...  

Development ◽  
1993 ◽  
Vol 118 (4) ◽  
pp. 1089-1094 ◽  
Author(s):  
M. Pesce ◽  
M.G. Farrace ◽  
M. Piacentini ◽  
S. Dolci ◽  
M. De Felici

Proliferating primordial germ cells (PGCs) isolated from mouse embryos soon after their arrival in the genital ridges would only survive in vitro at temperature of less than 30 degrees C (De Felici, M. and McLaren, A. (1983). Exp. Cell. Res. 144, 417–427; Wabik-Sliz, B. and McLaren, A. (1984). Exp. Cell. Res. 154, 530–536) or when co-cultured on cell feeder layers (Donovan, P. J., Stott, D., Godin, I., Heasman, J. and Wylie, C. C. (1986). Cell 44, 831–838; De Felici, M. and Dolci, S. (1991). Dev. Biol. 147, 281–284). In the present paper we report that mouse PGC death in vitro occurs with all the hallmarks of programmed cell death or apoptosis. We found that after 4–5 hours in culture many PGCs isolated from 12.5 dpc fetal gonads assumed a nuclear morphology and produced membrane bound fragments (apoptotic bodies) typical of apoptotic cells. In addition, PGCs in culture accumulated high level of tissue transglutaminase (tTGase; an enzyme that is induced and activated during apoptosis) and showed extensive degradation of DNA to oligonucleosomal fragments, which is characteristic of apoptosis. The physiological relevance of this mechanism of PGC death is supported by the finding that some PGCs undergoing apoptosis, as revealed by the high level of tTGase expression, were detected in the embryo. Most importantly, we show that the addition of stem cell factor (SCF) or leukemia inhibitory factor (LIF) to the culture medium, two cytokines known to favour PGC survival and/or proliferation in vitro, markedly reduced the occurrence of apoptosis in PGCs during the first hours in culture.(ABSTRACT TRUNCATED AT 250 WORDS)


2020 ◽  
Vol 7 ◽  
Author(s):  
Jingke Du ◽  
Jiancheng Yang ◽  
Zihao He ◽  
Junqi Cui ◽  
Yiqi Yang ◽  
...  

PurposeBone remodeling is affected by mechanical stimulation. Osteocytes are the primary mechanical load-sensing cells in the bone, and can regulate osteoblast and osteoclast activity, thus playing a key role in bone remodeling. Further, bone mass during exercise is also regulated by Leukemia inhibitory factor (LIF). This study aimed to investigate the role of LIF in the mechanical response of the bone, in vivo and in vitro, and to elucidate the mechanism by which osteocytes secrete LIF to regulate osteoblasts and osteoclasts.MethodsA tail-suspension (TS) mouse model was used in this study to mimic muscular disuse. ELISA and immunohistochemistry were performed to detect bone and serum LIF levels. Micro-computed tomography (CT) of the mouse femurs was performed to measure three-dimensional bone structure parameters. Fluid shear stress (FSS) and microgravity simulation experiments were performed to study mechanical stress-induced LIF secretion and its resultant effects. Bone marrow macrophages (BMMs) and bone mesenchymal stem cells (BMSCs) were cultured to induce in vitro osteoclastogenesis and osteogenesis, respectively.ResultsMicro-CT results showed that TS mice exhibited deteriorated bone microstructure and lower serum LIF expression. LIF secretion by osteocytes was promoted by FSS and was repressed in a microgravity environment. Further experiments showed that LIF could elevate the tartrate-resistant acid phosphatase activity in BMM-derived osteoclasts through the STAT3 signaling pathway. LIF also enhanced alkaline phosphatase staining and osteogenesis-related gene expression during the osteogenic differentiation of BMSCs.ConclusionMechanical loading affected LIF expression levels in osteocytes, thereby altering the balance between osteoclastogenesis and osteogenesis.


1989 ◽  
Vol 257 (2) ◽  
pp. F177-F181 ◽  
Author(s):  
C. Khadouri ◽  
S. Marsy ◽  
C. Barlet-Bas ◽  
A. Doucet

Because previous studies indicated that in the collecting tubule, N-ethylmaleimide (NEM)-sensitive ATPase, the biochemical equivalent of the proton pump, is controlled by mineralocorticoids in the long term, the present study was designed to investigate whether such control also exists in the short term. Therefore we investigated the in vivo and in vitro effects of aldosterone on the enzyme activity in cortical and outer medullary collecting tubules (CCT and MCT, respectively) from adrenalectomized rats. Administration of aldosterone (10 micrograms/kg body wt) markedly stimulated NEM-sensitive ATPase activity in the CCT and MCT within 3 h. Similarly, incubating CCT or MCT for 3 h in the presence of 10(-8) M aldosterone enhanced NEM-sensitive ATPase activity up to values similar to those previously measured in the corresponding nephron segments of normal rats. In vitro stimulation of NEM-sensitive ATPase was dose dependent in regard to aldosterone (apparent affinity constant approximately 10(-9) M), appeared after a 30-min lag period, and reached its maximum after 2-2.5 h. Finally, actinomycin D and cycloheximide totally abolished the in vitro action of aldosterone, demonstrating the involvement of protein synthesis in this process.


Blood ◽  
1990 ◽  
Vol 75 (3) ◽  
pp. 721-729 ◽  
Author(s):  
AL Howell ◽  
TA Stukel ◽  
CD Bloomfield ◽  
FR Davey ◽  
ED Ball

Abstract The characteristic lesion in acute myeloid leukemia (AML) is the failure of myeloid cells to differentiate normally, leading to the accumulation of immature blast cells (BC) in the bone marrow. We determined whether BC and leukemia colony-forming cells (L-CFC) from AML patients could differentiate in vitro after short-term culture with interferon-gamma (IFN gamma), 1,25 dihydroxyvitamin D3 (D3), retinoic acid (RA), tumor necrosis factor-alpha (TNF alpha), and granulocyte- monocyte colony-stimulating factor (GM-CSF). Expression of myeloid differentiation antigens CD15, CD14, CD33, and p124 was determined on the BC by immunofluorescence and on the L-CFC by monoclonal antibody (MoAb) and complement (C')-mediated cytotoxicity followed by cloning in methylcellulose. We found that 26 of 39 (67%) cases demonstrated changes in the expression of myeloid differentiation antigens on the BC, and 6 of 7 (86%) cases showed an altered L-CFC myeloid antigen phenotype after short-term culture with differentiating agents. Alterations in myeloid antigen expression in the L-CFC population correlated with a reduction in L-CFC cloning potential. In the BC, alterations of myeloid differentiation antigens occurred in a manner consistent with those observed during normal myelopoiesis. For example, CD14 antigen expression (a late-stage monocyte antigen) increased on BC from 12 of 39 (31%) cases, and p124 (an antigen expressed both by myeloid progenitor cells and by a subset of monocytes) increased on 15 of 39 (38%) cases. Changes in the expression of CD33 antigens (expressed normally by myeloid progenitor cells and by mature monocytes) on the BC were variable, with 7 of 29 cases (24%) showing a decrease and 7 of 29 cases (24%) showing an increase. When comparisons were made between pairs of differentiation agents that caused the altered expression of an antigen on either the BC or L-CFC of a patient, the majority of changes were in the same direction (either both “increased” or both “decreased”). This suggests that the direction of antigen change is characteristic of the leukemia cell subpopulation for each patient and not of the stimulatory agent. This study demonstrates that cells from more than two thirds of AML cases examined responded to various differentiation agents in vitro as measured by changes in the expression of myeloid cell-associated surface antigens and by alterations in cloning potential of the L-CFC, a finding of potential clinical significance.


Sign in / Sign up

Export Citation Format

Share Document