scholarly journals Basic fibroblast growth factor stimulates myelopoiesis in long-term human bone marrow cultures

Blood ◽  
1991 ◽  
Vol 77 (5) ◽  
pp. 954-960 ◽  
Author(s):  
EL Wilson ◽  
DB Rifkin ◽  
F Kelly ◽  
MJ Hannocks ◽  
JL Gabrilove

Abstract We previously showed that basic fibroblast growth factor (bFGF) is a potent mitogen for human bone marrow (BM) stromal cells and significantly delays their senescence. In the present study, we demonstrated that low concentrations of bFGF (0.2 to 2 ng/mL) enhance myelopoiesis in long-term human BM culture. Addition of bFGF to long- term BM cultures resulted in an increase in (a) the number of nonadherent cells (sixfold), particularly those of the neutrophil granulocyte series; (b) the number of nonadherent granulocyte colony- stimulating factor (G-CSF)- and granulocyte-macrophage colony- stimulating factor (GM-CSF)-responsive progenitor cells; (c) the number of adherent foci of hematopoietic cells (10-fold); and (d) the number of progenitor cells in the adherent stromal cell layer. These effects were not noted with higher concentrations of bFGF (20 ng/mL). Thus, low concentrations of bFGF effectively augment myelopoiesis in human long- term BM cultures, and bFGF may therefore be a regulator of the hematopoietic system in vitro and in vivo.

Blood ◽  
1991 ◽  
Vol 77 (5) ◽  
pp. 954-960 ◽  
Author(s):  
EL Wilson ◽  
DB Rifkin ◽  
F Kelly ◽  
MJ Hannocks ◽  
JL Gabrilove

We previously showed that basic fibroblast growth factor (bFGF) is a potent mitogen for human bone marrow (BM) stromal cells and significantly delays their senescence. In the present study, we demonstrated that low concentrations of bFGF (0.2 to 2 ng/mL) enhance myelopoiesis in long-term human BM culture. Addition of bFGF to long- term BM cultures resulted in an increase in (a) the number of nonadherent cells (sixfold), particularly those of the neutrophil granulocyte series; (b) the number of nonadherent granulocyte colony- stimulating factor (G-CSF)- and granulocyte-macrophage colony- stimulating factor (GM-CSF)-responsive progenitor cells; (c) the number of adherent foci of hematopoietic cells (10-fold); and (d) the number of progenitor cells in the adherent stromal cell layer. These effects were not noted with higher concentrations of bFGF (20 ng/mL). Thus, low concentrations of bFGF effectively augment myelopoiesis in human long- term BM cultures, and bFGF may therefore be a regulator of the hematopoietic system in vitro and in vivo.


1990 ◽  
Vol 3 (3) ◽  
pp. 231-236 ◽  
Author(s):  
Lisa I. Oliver ◽  
Daniel B. Rifkin ◽  
Janice Gabrilove ◽  
Melanie-Jane Hannocks ◽  
E. Lynette Wilson

Blood ◽  
1995 ◽  
Vol 86 (6) ◽  
pp. 2123-2129 ◽  
Author(s):  
AC Berardi ◽  
A Wang ◽  
J Abraham ◽  
DT Scadden

Basic fibroblast growth factor or fibroblast growth factor-2 (FGF) has been shown to affect myeloid cell proliferation and hypothesized to stimulate primitive hematopoietic cells. We sought to evaluate the effect of FGF on hematopoietic stem cells and to determine if FGF mediated its effects on progenitor cells directly or through the induction of other cytokines. To address the direct effects of FGF, we investigated whether FGF induced production of interleukin-1 beta (IL-1 beta), tumor necrosis factor alpha, IL-6, granulocyte colony- stimulating factor, or granulocyte-macrophage colony-stimulating factor by two types of accessory cells, bone marrow (BM) fibroblasts and macrophages. We further evaluated whether antibodies to FGF-induced cytokines affected colony formation. To determine if FGF was capable of stimulating multipotent progenitors, we assessed the output of different colony types after stimulation of BM mononuclear cells (BMMC) or CD34+ BMMC and compared the effects of FGF with the stem cell active cytokine, kit ligand (KL). In addition, a subset of CD34+ BMMC with characteristics of hematopoietic stem cells was isolated by functional selection and their response to FGF was evaluated using proliferation, colony-forming, and single-cell polymerase chain reaction (PCR) assays. We determined that FGF had a stimulatory effect on the production of a single cytokine, IL-6, but that the effects of FGF on colony formation were not attributable to that induction. FGF was more restricted in its in vitro effects on BM progenitors than KL was, having no effect on erythroid colony formation. FGF did not stimulate stem cells and FGF receptors were not detected on stem cells as evaluated by single-cell reverse transcription PCR. In contrast, FGF receptor gene expression was detected in myeloid progenitor populations. These data support a directly mediated effect for FGF that appears to be restricted to lineage-committed myeloid progenitor cells. FGF does not appear to modulate the human hematopoietic stem cell.


1996 ◽  
Vol 5 (2) ◽  
pp. 179-189 ◽  
Author(s):  
Yung H. Chiang ◽  
Vincenzo Silani ◽  
Feng C. Zhou

Procurement of multipotential neuroglial stem cells is possible with the addition of epidermal growth factor (EGF). Stem cells will differentiate into neurons and glia upon the removal of EGF from the culture medium. We have previously characterized the neuronal differentiation of stem cells derived from long-term cultured nonpassage neurospheres. In the current study, we (1) characterize the morphological differentiation of the astroglial progenitor cell from 3-mo-old neurospheres, (2) examine whether the astroglial progenitor cells from neurospheres of different brain areas exhibit different differentiation responses to the same exogenous signals, and (3) test the effects of basic fibroblast growth factor (bFGF) and retinol on differentiation. Cerebral cortex, striatum, and mesencephalon cells were obtained from Embryonic Day 14 (E-14) rat fetuses and were dissociated for the procurement of neurospheres in chemically defined medium supplemented with EGF. After 3 mo in culture, the neurospheres, derived from each of the three brain areas, were subcultured into three groups on chamber slides: (1) basal medium, (2) the basal medium plus 20 ng/mL bFGF, and (3) the basal medium plus 10 μM retinol. Phenotypic expression of astroglial cells was examined after 14 days subculture. Our findings indicate that the 3-mo-old cultured nonpassage neurospheres contained numerous multipotential stem cells that stained positive with nestin, and that environmental factors played an important role in influencing the differentiation of astroglial progenitor cells. As detected by glial fibrillary acid protein (GFAP), astroglial progenitor cells turned into protoplasmic astrocytes in the FCS-containing basal medium, fibrous astrocytes in the presence of bFGF, and spindle-shaped astrocytes in the presence of retinol. There were no noticeable differences in differentiation among astroglial progenitor cells of the various brain region-derived neurospheres in any of the three medium conditions. Peculiar varicosity-and growth cone-like structures on the long slender GFAP-positive processes suggest that neuroblasts and glioblast may share common morphologies, features, or common progenitor cells during initial differentiation in vitro.


Sign in / Sign up

Export Citation Format

Share Document