scholarly journals Erythropoiesis in Fanconi's anemia

Blood ◽  
1991 ◽  
Vol 78 (3) ◽  
pp. 602-608 ◽  
Author(s):  
BP Alter ◽  
ME Knobloch ◽  
RS Weinberg

Fanconi's anemia (FA) is an autosomal recessive condition in which greater than 90% of the homozygotes develop aplastic anemia. To determine the relation between erythroid progenitors and clinical status, blood and marrow mononuclear cells were cultured in methyl cellulose with erythropoietin, plus other hematopoietic growth factors, and growth in normal oxygen (20%) was compared with growth in low, physiologic oxygen (5%). Peripheral blood cultures were performed from 24 patients, and marrows from six. Patients were classified into six clinical groups. Group 1: Severe aplasia, transfused; one patient; no erythroid progenitors. Group 2: Severe, transfused, androgen unresponsive; one patient; no blood burst-forming units-erythroid (BFU- E). Group 3: Androgen responsive; eight patients, with decreased blood BFU-E. Group 4: Aplastic, about to start treatment; two patients; below normal numbers of colony-forming units-erythroid (CFU-E) and BFU-E. Group 5: Stable, with mild anemia, and/or thrombocytopenia, and/or macrocytosis; seven patients; with below normal numbers of blood BFU-E. Group 6: Hematologically normal; five patients; blood BFU-E low normal to normal. One marrow had normal numbers of CFU-E and BFU-E. Incubation in 5% oxygen doubled CFU-E and BFU-E only in the patients with close to normal or normal growth in 20% oxygen. Hemin and interleukin-3 increased growth slightly in those cultures where there was some growth with erythropoietin alone. Our data show that there is a correlation between current clinical status and in vitro erythropoiesis. Cultures of erythroid progenitors may also be useful predictors of hematologic prognosis in FA, although our follow-up period is too short to prove this hypothesis.

Blood ◽  
1991 ◽  
Vol 78 (3) ◽  
pp. 602-608 ◽  
Author(s):  
BP Alter ◽  
ME Knobloch ◽  
RS Weinberg

Abstract Fanconi's anemia (FA) is an autosomal recessive condition in which greater than 90% of the homozygotes develop aplastic anemia. To determine the relation between erythroid progenitors and clinical status, blood and marrow mononuclear cells were cultured in methyl cellulose with erythropoietin, plus other hematopoietic growth factors, and growth in normal oxygen (20%) was compared with growth in low, physiologic oxygen (5%). Peripheral blood cultures were performed from 24 patients, and marrows from six. Patients were classified into six clinical groups. Group 1: Severe aplasia, transfused; one patient; no erythroid progenitors. Group 2: Severe, transfused, androgen unresponsive; one patient; no blood burst-forming units-erythroid (BFU- E). Group 3: Androgen responsive; eight patients, with decreased blood BFU-E. Group 4: Aplastic, about to start treatment; two patients; below normal numbers of colony-forming units-erythroid (CFU-E) and BFU-E. Group 5: Stable, with mild anemia, and/or thrombocytopenia, and/or macrocytosis; seven patients; with below normal numbers of blood BFU-E. Group 6: Hematologically normal; five patients; blood BFU-E low normal to normal. One marrow had normal numbers of CFU-E and BFU-E. Incubation in 5% oxygen doubled CFU-E and BFU-E only in the patients with close to normal or normal growth in 20% oxygen. Hemin and interleukin-3 increased growth slightly in those cultures where there was some growth with erythropoietin alone. Our data show that there is a correlation between current clinical status and in vitro erythropoiesis. Cultures of erythroid progenitors may also be useful predictors of hematologic prognosis in FA, although our follow-up period is too short to prove this hypothesis.


Blood ◽  
1992 ◽  
Vol 80 (12) ◽  
pp. 3000-3008
Author(s):  
BP Alter ◽  
ME Knobloch ◽  
L He ◽  
AP Gillio ◽  
RJ O'Reilly ◽  
...  

Stem cell factor (SCF) enhances normal hematopoiesis. We examined its effect in vitro on bone marrow and blood progenitors from patients with inherited bone marrow failure syndromes, including 17 patients each with Diamond-Blackfan anemia (DBA) and Fanconi's anemia (FA), 3 with dyskeratosis congenita (DC), and 1 each with amegakaryocytic thrombocytopenia (amega) and transient erythroblastopenia of childhood (TEC). Mononuclear cells were cultured with erythropoietin (Ep) alone or combined with SCF or other factors. SCF increased the growth of erythroid progenitors in cultures from 50% of normal controls, 90% of DBA, 70% of FA, 30% of DC, and the amega and TEC patients; normal numbers were reached in 25% of DBA studies. Improved in vitro erythropoiesis with SCF in all types of inherited marrow failure syndromes does not suggest a common defect involving kit or SCF, but implies that SCF may be helpful in the treatment of hematopoietic defects of varied etiologies.


Blood ◽  
1993 ◽  
Vol 81 (2) ◽  
pp. 391-398
Author(s):  
P Rameshwar ◽  
D Ganea ◽  
P Gascon

The neuropeptide Substance P (SP) is widely distributed in the peripheral nervous system. Its biologic effects have been extensively studied in the immune system. However, even though the bone marrow (BM) is innervated with SP-immunoreactive fibers and some of its cells not only express SP receptors (T and B cells, endothelial cells, and macrophages) but also produce SP (macrophages, eosinophils, and endothelial cells), the effects of SP on hematopoiesis are scanty. Furthermore, SP induces the production of hematopoietic growth factors (HGFs) (interleukin-1 [IL-1], IL-6, and tumor necrosis factor alpha) from human monocytes. In this study, we have found a potent in vitro stimulatory effect of SP (10(-8) to 10(-12) mol/L) on hematopoiesis for both erythroid and granulocytic progenitors in short-term methyl- cellulose BM cultures. SP alone, in the absence of exogenous HGFs, is able to sustain hematopoiesis in vitro. This stimulatory effect of SP is: (1) mostly mediated by the adherent cells; (2) completely abrogated by two SP receptor (SP-R) antagonists; and (3) partially reduced by anti-IL-1, IL-3, IL-6, and granulocyte-macrophage colony-stimulating factor (GM-CSF). Furthermore, it appears that the stimulatory effect of SP may be mediated by IL-3 and GM-CSF because we have also found that SP induces the release of these two cytokines from BM mononuclear cells. Considering that the SP effect occurs at concentrations as low as 10(-11) mol/L, and via a specific receptor, it appears that SP may play a physiologic role in regulating hematopoiesis, at least partially through the adherent BM cells and the release of HGFs, and may place SP, a neuropeptide, in a new category of hematopoietic regulators.


Blood ◽  
1992 ◽  
Vol 80 (12) ◽  
pp. 3000-3008 ◽  
Author(s):  
BP Alter ◽  
ME Knobloch ◽  
L He ◽  
AP Gillio ◽  
RJ O'Reilly ◽  
...  

Abstract Stem cell factor (SCF) enhances normal hematopoiesis. We examined its effect in vitro on bone marrow and blood progenitors from patients with inherited bone marrow failure syndromes, including 17 patients each with Diamond-Blackfan anemia (DBA) and Fanconi's anemia (FA), 3 with dyskeratosis congenita (DC), and 1 each with amegakaryocytic thrombocytopenia (amega) and transient erythroblastopenia of childhood (TEC). Mononuclear cells were cultured with erythropoietin (Ep) alone or combined with SCF or other factors. SCF increased the growth of erythroid progenitors in cultures from 50% of normal controls, 90% of DBA, 70% of FA, 30% of DC, and the amega and TEC patients; normal numbers were reached in 25% of DBA studies. Improved in vitro erythropoiesis with SCF in all types of inherited marrow failure syndromes does not suggest a common defect involving kit or SCF, but implies that SCF may be helpful in the treatment of hematopoietic defects of varied etiologies.


Blood ◽  
1993 ◽  
Vol 81 (2) ◽  
pp. 391-398 ◽  
Author(s):  
P Rameshwar ◽  
D Ganea ◽  
P Gascon

Abstract The neuropeptide Substance P (SP) is widely distributed in the peripheral nervous system. Its biologic effects have been extensively studied in the immune system. However, even though the bone marrow (BM) is innervated with SP-immunoreactive fibers and some of its cells not only express SP receptors (T and B cells, endothelial cells, and macrophages) but also produce SP (macrophages, eosinophils, and endothelial cells), the effects of SP on hematopoiesis are scanty. Furthermore, SP induces the production of hematopoietic growth factors (HGFs) (interleukin-1 [IL-1], IL-6, and tumor necrosis factor alpha) from human monocytes. In this study, we have found a potent in vitro stimulatory effect of SP (10(-8) to 10(-12) mol/L) on hematopoiesis for both erythroid and granulocytic progenitors in short-term methyl- cellulose BM cultures. SP alone, in the absence of exogenous HGFs, is able to sustain hematopoiesis in vitro. This stimulatory effect of SP is: (1) mostly mediated by the adherent cells; (2) completely abrogated by two SP receptor (SP-R) antagonists; and (3) partially reduced by anti-IL-1, IL-3, IL-6, and granulocyte-macrophage colony-stimulating factor (GM-CSF). Furthermore, it appears that the stimulatory effect of SP may be mediated by IL-3 and GM-CSF because we have also found that SP induces the release of these two cytokines from BM mononuclear cells. Considering that the SP effect occurs at concentrations as low as 10(-11) mol/L, and via a specific receptor, it appears that SP may play a physiologic role in regulating hematopoiesis, at least partially through the adherent BM cells and the release of HGFs, and may place SP, a neuropeptide, in a new category of hematopoietic regulators.


Blood ◽  
1991 ◽  
Vol 78 (9) ◽  
pp. 2198-2202 ◽  
Author(s):  
JL Abkowitz ◽  
KM Sabo ◽  
B Nakamoto ◽  
CA Blau ◽  
FH Martin ◽  
...  

Abstract To provide insights into the pathogenesis of Diamond-Blackfan anemia, we examined the in vitro response of erythroid progenitors to the recently isolated ligand for c-kit (stem cell factor, SCF). For these studies, marrow or blood mononuclear cells from 10 Diamond-Blackfan patients were cultured with erythropoietin (Ep), Ep and interleukin-3, Ep and granulocyte-macrophage colony-stimulating factor, or Ep and lymphocyte conditioned media (LCM). These combinations were tested in the presence or absence of SCF. The mean number of cells per erythroid burst increased 5 to 50-fold in cultures containing SCF. Furthermore, many additional erythroid bursts were seen (mean increment 3.2 x baseline values). Although burst-forming unit-erythroid (BFU-E) from all patients responded, there were differences among individuals in the sensitivity of their BFU-E to SCF. In six patients and all control studies, plateau frequencies of erythroid bursts were achieved with less than or equal to 10 ng/mL SCF, whereas in studies from the other four patients, over 50 ng/mL SCF was required. These data invite speculation that the c-kit receptor/ligand axis is involved in the pathogenesis of Diamond-Blackfan anemia. More importantly and regardless of whether the observed patterns of response reflect the primary defect or an epiphenomenon, our data strongly support a therapeutic trial of SCF in patients with Diamond-Blackfan anemia.


Blood ◽  
1978 ◽  
Vol 51 (1) ◽  
pp. 1-8 ◽  
Author(s):  
CM Richman ◽  
L Chess ◽  
RA Yankee

Abstract The concentration of committed granulocytic progenitor cells (CFU-C) in functionally unique subpopulations of human peripheral blood mononuclear cells has been determined by the in vitro methyl-cellulose assay. Using immunoabsorbent column chromatography and rosette-depletion techniques, we have demonstrated that CFU-C, although not present in either purified T or B lymphocyte populations, are highly concentrated in the “null” cell population, which lacks sheep erythrocyte receptors and surface immunoglobulin. Further fractionation of this null subset has demonstrated that CFU-C do not bear complement receptors, but require the presence of peripheral blood mononuclear cell feeder layers for maximum proliferation.


Blood ◽  
2007 ◽  
Vol 110 (1) ◽  
pp. 116-124 ◽  
Author(s):  
Yi Zhang ◽  
Ernesto Diaz-Flores ◽  
Geqiang Li ◽  
Zhengqi Wang ◽  
Zizhen Kang ◽  
...  

Gab2 is an important adapter molecule for cytokine signaling. Despite its major role in signaling by receptors associated with hematopoiesis, the role of Gab2 in hematopoiesis has not been addressed. We report that despite normal numbers of peripheral blood cells, bone marrow cells, and c-Kit+Lin−Sca-1+ (KLS) cells, Gab2-deficient hematopoietic cells are deficient in cytokine responsiveness. Significant reductions in the number of colony-forming units in culture (CFU-C) in the presence of limiting cytokine concentrations were observed, and these defects could be completely corrected by retroviral complementation. In earlier hematopoiesis, Gab2-deficient KLS cells isolated in vitro responded poorly to hematopoietic growth factors, resulting in an up to 11-fold reduction in response to a cocktail of stem cell factor, flt3 ligand, and thrombopoietin. Gab2-deficient c-Kit+Lin− cells also demonstrate impaired activation of extracellular signal-regulated kinase (ERK) and S6 in response to IL-3, which supports defects in activating the phosphatidylinositol-3 kinase (PI-3K) and mitogen-associated protein kinase (MAPK) signaling cascades. Associated with the early defects in cytokine response, competitive transplantation of Gab2−/− bone marrow cells resulted in defective long-term multilineage repopulation. Therefore, we demonstrate that Gab2 adapter function is intrinsically required for hematopoietic cell response to early-acting cytokines, resulting in defective hematopoiesis in Gab2-deficient mice.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1549-1549
Author(s):  
Hana Bruchova ◽  
Donghoon Yoon ◽  
Archana Agarwal ◽  
Eva Otahalova ◽  
Hyojin Kim ◽  
...  

Abstract Erythroid differentiation is a dynamic process leading to the production of mature red blood cells. Even small variations in this process may result in severe disease phenotype. To study this process, we used a three-phase erythroid expansion system to expand homogeneous erythroid progenitors (EPs) from peripheral blood mononuclear cells (PB-MNCs) (Bruchova H. et al, 2007, Exp. Hematology, in press). We then characterized the expanded EPs from polycythemia vera (PV) patients and healthy donors at various points of maturation comparing cell proliferation and differentiation stage. EPs from PV patients outgrew controls up to day 14 (∼12 fold for PV and ∼4 fold for control compared to day 1). Differentiation was analyzed using both FACS analysis (with CD71/CD235a staining) and morphological evaluation (Wright-Giemsa staining), and demonstrated a more rapid differentiation of PV EPs when compared to controls up to day 14. We then evaluated apoptosis/cell cycle analysis by propidium iodide staining. Although PV EPs contained larger S phase population (45%) than controls (34%) at day 11, the apoptosis proportion of PV EPs was increased ∼2 fold to control from day 14. To understand the molecular mechanism of these differences between PV and controls, we analyzed the gene expression of several known regulators in erythropoiesis - BCL2, EPOR, cMYB, p27. Two transcripts (EPOR and cMYB) showed unique profiles on PV EPs. The EPOR transcript increased earlier in PV; i.e. from day 7 until day 21 and reached a plateau at day 11, compared to day 9 until day 19 and plateau at day 14 in controls. In addition, PV EPs contained higher levels of EPOR transcripts than control on most of timepoints. Interestingly, cMYB, which is known to augment early progenitor proliferation, was highly expressed from day 7 in PV, through day 11. Control EPs also expressed cMYB from day 9 through day 11; however, cMYB levels from any stages of control EPs were markedly lower than PV EPs at day 7. In this study, we demonstrate that PV erythropoiesis has unique features of hyperproliferation and an accelerated differentiation. These features are associated with earlier and higher expressions of cMYB and EPOR at the early stage of erythropoiesis.


Blood ◽  
1991 ◽  
Vol 77 (7) ◽  
pp. 1442-1451
Author(s):  
JL Abkowitz

Feline leukemia virus, subgroup C/Sarma (FeLV-C/Sarma) induces pure red blood cell aplasia in cats. Although erythroid (BFU-E and CFU-E) and granulocyte/macrophage (CFU-GM) progenitors are infected with this virus, only erythropoiesis is impaired. Two to 3 weeks before the onset of anemia, CFU-E become undetectable in marrow cultures while earlier erythroid progenitors (BFU-E) persist, suggesting that FeLV-C/Sarma (presumably via its envelope glycoprotein gp70) inhibits the differentiation of BFU-E to CFU-E in vivo. To correlate in vitro observations with the progression of disease, prospective studies were performed in six cats. These studies showed that at the time that the frequencies of CFU-E decreased in marrow cultures, BFU-E no longer responded to hematopoietic growth factor(s), although the responses of CFU-GM were unchanged. In further studies, anemic cats received suramin, a reverse-transcriptase inhibitor with other diverse effects. Within 4 to 14 days, erythropoiesis improved and up to 1,616 CFU-E were detected per 10(5) marrow mononuclear cells. However, progenitor cells remained infected, suggesting that suramin modulated erythroid differentiation without inhibiting progenitor infection. These observations led to the hypothesis that the gp70 of FeLV-C/Sarma impairs BFU-E differentiation by interference with ligand/receptor interactions or signal transduction pathways unique to erythroid cells. Understanding this mechanism should provide insights into the interactions controlling early erythropoiesis.


Sign in / Sign up

Export Citation Format

Share Document