scholarly journals Autoantibody-associated cross-reactive idiotype-bearing human B lymphocytes: distribution and characterization, including Ig VH gene and CD5 antigen expression

Blood ◽  
1991 ◽  
Vol 78 (6) ◽  
pp. 1503-1515
Author(s):  
G Inghirami ◽  
DR Foitl ◽  
A Sabichi ◽  
BY Zhu ◽  
DM Knowles

Monoclonal antibodies (MoAbs) specific for autoantibody associated cross-reactive idiotypes (CRIs) frequently recognize the Igs of neoplastic B cells in patients with chronic lymphocytic leukemia (CLL) and/or Waldenstrom's macroglobulinemia. Very little is known regarding the normal B cells expressing CRIs (CRI-positive B cells). Using a variety of MoAbs against CRIs we investigated the distribution and topographic localization of CRI-positive B cells in normal adult human lymphoid tissues. We found that CRI-positive B cells represent a significant B-cell subpopulation expressing surface IgM (greater than 90%), IgG (approximately 5%), or IgA (approximately 2%). CRI-positive B cells are homogeneously distributed throughout all lymphoid tissues, accounting for 10% to 15% of all B lymphocytes, with the exception of the thymus, in which they represent the predominant B cell population. Immunophenotypic studies showed (1) that a small subpopulation (3.7% +/- 0.8%) of CRI-positive B cells are activated in vivo, based on CD25 and CD38 antigen expression; and (2) that approximately 50% of CRI-positive B cells express the 67-Kd pan-T-lymphocyte CD5 antigen, suggesting that the CRI-positive B-cell subset and the recently described CD5-positive B-cell subset are closely related. This hypothesis is supported by the fact that CRI-positive B cells produce oligo or polyreactive Igs, which are a characteristic feature of CD5-positive B cells, and also by the fact that both B-cell subpopulations appear to use similar and restricted Ig VH gene family members.

Blood ◽  
1991 ◽  
Vol 78 (6) ◽  
pp. 1503-1515 ◽  
Author(s):  
G Inghirami ◽  
DR Foitl ◽  
A Sabichi ◽  
BY Zhu ◽  
DM Knowles

Abstract Monoclonal antibodies (MoAbs) specific for autoantibody associated cross-reactive idiotypes (CRIs) frequently recognize the Igs of neoplastic B cells in patients with chronic lymphocytic leukemia (CLL) and/or Waldenstrom's macroglobulinemia. Very little is known regarding the normal B cells expressing CRIs (CRI-positive B cells). Using a variety of MoAbs against CRIs we investigated the distribution and topographic localization of CRI-positive B cells in normal adult human lymphoid tissues. We found that CRI-positive B cells represent a significant B-cell subpopulation expressing surface IgM (greater than 90%), IgG (approximately 5%), or IgA (approximately 2%). CRI-positive B cells are homogeneously distributed throughout all lymphoid tissues, accounting for 10% to 15% of all B lymphocytes, with the exception of the thymus, in which they represent the predominant B cell population. Immunophenotypic studies showed (1) that a small subpopulation (3.7% +/- 0.8%) of CRI-positive B cells are activated in vivo, based on CD25 and CD38 antigen expression; and (2) that approximately 50% of CRI-positive B cells express the 67-Kd pan-T-lymphocyte CD5 antigen, suggesting that the CRI-positive B-cell subset and the recently described CD5-positive B-cell subset are closely related. This hypothesis is supported by the fact that CRI-positive B cells produce oligo or polyreactive Igs, which are a characteristic feature of CD5-positive B cells, and also by the fact that both B-cell subpopulations appear to use similar and restricted Ig VH gene family members.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2023-2023 ◽  
Author(s):  
Filippo Severin ◽  
Federica Frezzato ◽  
Veronica Martini ◽  
Flavia Raggi ◽  
Valentina Trimarco ◽  
...  

Abstract INTRODUCTION Chronic Lymphocytic Leukemia (CLL) is characterized by the accumulation of mature clonal CD19+/CD5+/CD23+ B lymphocytes in peripheral blood, bone marrow, and lymphoid tissues. Despite their in vivo prolonged lifespan due to intrinsic defects, CLL leukemic cells rapidly undergo spontaneous apoptosis in vitro, highlighting the need of extrinsic signals delivered by the microenvironment. Several molecules, including those released by mesenchymal stromal cells (MSCs), signal through JAK (Janus kinases)-STAT (Signal Transducers and Activators of Transcription) pathways. We particularly focused on the JAK2/STAT3 axis since Interleukin-6 (IL-6), one of the most abundant cytokines released in the CLL microenvironment, is the key ligand of the receptor triggering this pathway. The deregulation of JAK2/STAT3 axis may lead to aberrant activation of STAT3 and, as a result, to tumor development in hematopoietic cells. METHODS B cells were collected from 12 controls and 46 CLL patients. Purified cells (2x106cells/ml) were cultured, and treated with AG490 (10, 50 and 100μM), AZD1480 (1, 4 and 10μM), Fedratinib (1, 5 and 10μM), and Ruxolitinib (0.313, 2.5 and 10μM) (which are JAK2 inhibitors), and the STAT3 inhibitor Stattic (5, 7.5, and 10μM) for 24, 48 and 72h. Experiments with AG490 and Stattic were performed with/without MSCs. STAT3 expression and phosphorylation were evaluated by Western Blotting (WB) and Flow Cytometry (FC), and its localization was analyzed by confocal microscopy and subcellular fractionation. CLL and normal B cell viability was tested by FC with Annexin V/PI test. RESULTS We demonstrated that STAT3 was highly expressed in malignant B cells with respect to normal B lymphocytes. As far as STAT3 phosphorylation at Tyr705, that is an essential step for STAT3 activation, we demonstrated a constitutive phosphorylation in CLL cells by FC and WB analyses, although in some patients STAT3 Tyr705 phosphorylation is barely detected. We also pointed out that the in vitroincubation of leukemic B cells with AG490 and Stattic and Fedratinib, induces a dose-dependent apoptosis of CLL B cells. However, the tested doses of Ruxolitinib and AZD1480 did not seem to CLL B cell viability but only STAT3 phosphorylation. Both AG490 and Stattic were able to bypass the microenvironmental protection when neoplastic B cells were co-cultured with MSCs. STAT3 Tyr705 localization was analyzed in normal and leukemic B cells by a subcellular protein fractionation. We separated nuclei from cytosol, detecting STAT3 Tyr705 both in the cytosolic and in the nuclear fractions of CLL B cells. We showed that AG490 and Fedratinib treatment on CLL cells can mediate other effects: i) SHP-1 activity is turned on by JAK2 inhibition, decreasing its phosphorylation at Ser591; ii) AG490 administration inactivates protein Lyn, reducing the phosphorylation in its active site at Tyr396. Lyn, a Tyr-kinase, and SH2-domain containing Tyrosine Phosphatase (SHP-1), a Tyr-phosphatase, are both involved in the prolonged lifespan of neoplastic CLL cells. To confirm the link between JAK2 inhibition by AG490 and Lyn dephosphorylation, we added sodium orthovanadate (Na3VO4, 100 μM), a phosphatase inhibitor, to cell culture to restore Lyn activation (resulting from the inactivation of SHP-1 phosphatase); as a result, Lyn Tyr396 phosphorylation was restored. On the contrary, the treatment of CLL cells with Stattic did not induce any change in SHP-1 status with respect to untreated cells since Stattic is effective on STAT3, that is a downstream protein with respect to JAK2. Since Stattic did not affect SHP-1 activation, it does not impact on Lyn activation/phosphorylation. CONCLUSIONS The ability of AG490 and Stattic to induce apoptosis in leukemic B cells bypassing the pro-survival stimuli provided by the tumor microenvironment and the Fedratinib effectiveness at low doses, represents a starting point for the development of new therapeutic strategies in CLL. This study also provides new insights for the investigation of the pathogenesis of CLL focusing the attention on the cross-talk between JAK/STAT and BCR/Lyn axes. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1987 ◽  
Vol 69 (5) ◽  
pp. 1340-1347 ◽  
Author(s):  
V Pistoia ◽  
R Ghio ◽  
S Roncella ◽  
F Cozzolino ◽  
S Zupo ◽  
...  

Abstract Normal human B cells were purified from peripheral blood or tonsils and tested for their ability to release colony-stimulating activity (CSA) in short-term cultures. The target cells used in the CSA assays were from peripheral blood or bone marrow. Unstimulated B cells produced CSA in amounts similar to those present in the GCT-conditioned medium used as a positive control. The B cell-derived CSA predominantly promoted the growth of colonies that contained macrophages alone or macrophages and granulocytes. CSA eluted in a single peak from a G-75 Sephadex column with an approximate molecular weight (mw) of 65 to 70 kilodaltons (kd). Fractionation of tonsil B lymphocytes on Percoll density gradients showed that large B cells, probably already activated in vivo, were the main source of CSA. By contrast, small, resting B cells recovered from a different fraction of the Percoll gradient released minimum amounts or no CSA. However, these B cells became CSA producers following stimulation with Staphylococcus aureus Cowan (SAC) in vitro. B cells purified from the peripheral blood of nine out of 12 patients with B-cell chronic lymphocytic leukemia (B-CLL) also released CSA in vitro in the absence of stimuli. These findings suggest that by releasing CSA, B cells may have a role in the regulation of hematopoiesis and in the control of the inflammatory process.


Blood ◽  
1987 ◽  
Vol 69 (5) ◽  
pp. 1340-1347
Author(s):  
V Pistoia ◽  
R Ghio ◽  
S Roncella ◽  
F Cozzolino ◽  
S Zupo ◽  
...  

Normal human B cells were purified from peripheral blood or tonsils and tested for their ability to release colony-stimulating activity (CSA) in short-term cultures. The target cells used in the CSA assays were from peripheral blood or bone marrow. Unstimulated B cells produced CSA in amounts similar to those present in the GCT-conditioned medium used as a positive control. The B cell-derived CSA predominantly promoted the growth of colonies that contained macrophages alone or macrophages and granulocytes. CSA eluted in a single peak from a G-75 Sephadex column with an approximate molecular weight (mw) of 65 to 70 kilodaltons (kd). Fractionation of tonsil B lymphocytes on Percoll density gradients showed that large B cells, probably already activated in vivo, were the main source of CSA. By contrast, small, resting B cells recovered from a different fraction of the Percoll gradient released minimum amounts or no CSA. However, these B cells became CSA producers following stimulation with Staphylococcus aureus Cowan (SAC) in vitro. B cells purified from the peripheral blood of nine out of 12 patients with B-cell chronic lymphocytic leukemia (B-CLL) also released CSA in vitro in the absence of stimuli. These findings suggest that by releasing CSA, B cells may have a role in the regulation of hematopoiesis and in the control of the inflammatory process.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2948-2948
Author(s):  
Andrea Bürkle ◽  
Jan A. Burger

Abstract The chemokine B cell-activating chemokine-1 (BCA-1/CXCL13) is an important homing factor for lymphocytes to B cell zones of secondary lymphoid tissues. CXCL13 acts through its cognate receptor, CXCR5. Normal, mature B cells and a subset of memory T cells express CXCR5 chemokine receptors and migrate in response to BCA-1. However, BCA-1 displays a preferential chemotactic activity for B1 B cells when compared to “normal” B2 B cells. Because B lymphocytes from patients with Chronic Lymphocytic Leukemia (B-CLL) are in several aspects comparable to murine B1 cells, we hypothesized that the CXCR5-CXCL13 axis may be highly active in CLL. Initially, we noticed that CLL cells express functional CXCR5 receptors that induce actin polymerization, CXCR5 endocytosis, chemotaxis, and a prolonged activation of p44/42 MAP kinases. In addition, we examined CXCR5 surface expression in a series of CLL patients by flow cytometry and compared the results with normal B cells, or other leukemic B cell lymphoma. In CLL, leukemia B cells expressed significantly higher surface expression of CXCR5 (mean fluorescence intensity ratio/MFIR: 121 ± 9 (±SEM), n = 26) than circulating, CD19 positive B cells from healthy volunteers (CXCR5-MFIR: 69.9 ± 5.4, n = 11, p = 0.002). Neoplastic B cells from other leukemic B cell lymphomas displayed low surface CXCR5 expression (MFIR 19.7 ± 5.9, n = 11). Serum levels of CXCL13 were evaluated by ELISA. Sera from CLL patients displayed significantly higher levels of CXCL13 (mean ± SEM: 170.1 ± 21.5 pg/ml, n = 22) when compared to sera from healthy volunteers (mean ± SEM: 70.7 ± 5.2 pg/ml, n = 10, p = 0.004). Follicular dendritic cells (FDC) have been considered the main source of CXCL13 in secondary lymphoid tissues, thereby attracting T and B lymphocytes for cognate interactions. Surprisingly, we did not detect significant levels of CXCL13 in supernatants of HK follicular dendritic cells, that previously were demonstrated to protect CLL cells from apoptosis (Pedersen &Reed, Blood.2002;100:1795–801). In contrast, high levels of CXCL13 were detected in supernatants of CLL cell cultures in the presence of nurselike cells (NLC). In NLC cultures, CXCL13 levels were 610 ± 129.8 pg/ml (mean ± SEM, n = 4), whereas FDC supernatants contained 0.22 ± 0 pg/ml CXCL13 (mean ± SEM, n = 2). Because of these high CXCL13 levels in NLC cultures, we examined CXCR5 downregulation on CLL B cells in NLC co-cultures. When compared to freshly isolated CLL B cells, CLL cells from NLC cultures express significantly lower surface CXCR5. CXCR5 MFIR of CLL cells from NLC co-cultures was 7 ± 0.9, n = 4, compared to a CXCR5 MFIR of 91.6 ± 12 for freshly isolated CLL cells the same patients (mean ± SEM, n = 4, p = 0.000). These data indicate that high levels of bioactive CXCL13 are released in NLC cultures that stimulate cognate CXCR5 receptors on CLL B cells and induce signaling cascades, such as p44/42 MAPK, that induce prolonged survival. As such, this study provides a novel insight into interactions between CLL cells and their microenvironment within lymphoid tissues.


1989 ◽  
Vol 1 (1) ◽  
pp. 27-35 ◽  
Author(s):  
R D Sanderson ◽  
P Lalor ◽  
M Bernfield

Lymphopoietic cells require interactions with bone marrow stroma for normal maturation and show changes in adhesion to matrix during their differentiation. Syndecan, a heparan sulfate-rich integral membrane proteoglycan, functions as a matrix receptor by binding cells to interstitial collagens, fibronectin, and thrombospondin. Therefore, we asked whether syndecan was present on the surface of lymphopoietic cells. In bone marrow, we find syndecan only on precursor B cells. Expression changes with pre-B cell maturation in the marrow and with B-lymphocyte differentiation to plasma cells in interstitial matrices. Syndecan on B cell precursors is more heterogeneous and slightly larger than on plasma cells. Syndecan 1) is lost immediately before maturation and release of B lymphocytes into the circulation, 2) is absent on circulating and peripheral B lymphocytes, and 3) is reexpressed upon their differentiation into immobilized plasma cells. Thus, syndecan is expressed only when and where B lymphocytes associate with extracellular matrix. These results indicate that B cells differentiating in vivo alter their matrix receptor expression and suggest a role for syndecan in B cell stage-specific adhesion.


Blood ◽  
2007 ◽  
Vol 110 (9) ◽  
pp. 3316-3325 ◽  
Author(s):  
Andrea Bürkle ◽  
Matthias Niedermeier ◽  
Annette Schmitt-Gräff ◽  
William G. Wierda ◽  
Michael J. Keating ◽  
...  

Abstract CXCL13 is a homeostatic chemokine for lymphocyte homing and positioning within follicles of secondary lymphoid tissues, acting through its cognate receptor, CXCR5. Moreover, the CXCR5-CXCL13 axis plays a unique role in trafficking and homing of B1 cells. Here, we report that chronic lymphocytic leukemia (CLL) B cells express high levels of functional CXCR5. CXCR5 expression levels were similar on CLL B cells and normal CD5+ B cells, and higher compared with normal CD5− B cells, follicular B-helper T cells (TFH cells), or neoplastic B cells from other B-cell neoplasias. Stimulation of CLL cells with CXCL13 induces actin polymerization, CXCR5 endocytosis, chemotaxis, and prolonged activation of p44/42 mitogen-activated protein kinases. Anti-CXCR5 antibodies, pertussis toxin, and wortmannin inhibited chemotaxis to CXCL13, demonstrating the importance of Gi proteins and PI3 kinases for CXCR5 signaling. Moreover, CLL patients had significantly higher CXCL13 serum levels than volunteers, and CXCL13 levels correlated with β2 microglobulin. We detected CXCL13 mRNA expression by nurselike cells, and high levels of CXCL13 protein in supernatants of CLL nurselike cell cultures. By immunohistochemistry, we detected CXCL13+ expression by CD68+ macrophages in situ within CLL lymph nodes. These data suggest that CXCR5 plays a role in CLL cell positioning and cognate interactions between CLL and CXCL13-secreting CD68+ accessory cells in lymphoid tissues.


Blood ◽  
1995 ◽  
Vol 86 (10) ◽  
pp. 3883-3890 ◽  
Author(s):  
K Maloum ◽  
F Davi ◽  
C Magnac ◽  
O Pritsch ◽  
E McIntyre ◽  
...  

In contrast to highly mutated follicular lymphomas and multiple myelomas, chronic lymphocytic leukemias (CLLs) frequently express VH genes in germline configuration. It is currently unclear whether this difference is related to the expression of CD5 or to the differentiation stage of the B cell when malignant transformation occurs. We have studied the VH sequence of 11 cases of CD5- B-CLL to address the question whether CD5- B-CLL are derived from naive pregerminal B cells (low mutation pattern) or from germinal center- derived memory B cells (high mutation pattern). Among the 12 detected rearrangements (2 distinct rearrangements in 1 case) VH1 family was found in 2, VH2 in 2, VH3 in 4, and VH4 in 4. Nine different VH genes were detected among the 12 rearrangements, including 2 cases expressing V1–69 (51p1) and 1 case expressing V4–39 (VH4.18), previously reported to be overexpressed in CD5+ B-CLL. A higher mutation pattern, following a random distribution, was observed when compared with classical CD5+ B- CLL. However, as reported in normal B cells, these results appeared to be related to membrane Ig phenotype (less mutations in membrane mu delta-expressing forms in leukemias expressing exclusively membrane mu). Overall, the differences found when comparing the mutational profile with classical CD5+ B-CLL were not clearcut and might be explained more by the membrane isotype (mu v mu delta) than by CD5 expression.


Blood ◽  
1996 ◽  
Vol 88 (1) ◽  
pp. 222-229 ◽  
Author(s):  
KF Norrback ◽  
K Dahlenborg ◽  
R Carlsson ◽  
G Roos

Abstract Activation of telomerase seems to be a prerequisite for immortalization and is found in permanent cell lines and most malignant tumors. Normal somatic cells are generally telomerase negative, except for bone marrow stem cells. Weak activity is also present in peripheral blood cells. In the present study strong telomerase activity was demonstrated in vivo in normal mature cells of the immune system, as well as in malignant lymphomas. Benign lymph nodes had lower telomerase activity than benign tonsils, which exhibited intermediate to high activity comparable with findings in malignant lymphomas. In benign tonsils the activity seemed to be restricted to germinal center B cells. In benign lymphoid tissues telomerase activity correlated with B-cell numbers and cell proliferation, but this was not observed in the lymphoma group. High- grade lymphomas exhibited higher levels of telomerase compared with low- grade cases. The data showed that in vivo activation of telomerase is a characteristic feature of germinal center B cells. Different signals for activation of telomerase are likely to exist, one of them being immune stimulation. The data suggest that telomerase activity in malignant lymphomas can be explained by an “induction and retention” model, ie, transformation occurs in a normal, mature B cell with reactivated telomerase, which is retained in the neoplastic clone.


Blood ◽  
1992 ◽  
Vol 79 (11) ◽  
pp. 2981-2989 ◽  
Author(s):  
M Schena ◽  
LG Larsson ◽  
D Gottardi ◽  
G Gaidano ◽  
M Carlsson ◽  
...  

Abstract The bcl-2 gene is translocated into the Ig loci in about 80% of human follicular lymphomas and in 10% of B-type chronic lymphocytic leukemias (B-CLL), resulting in a high level of expression. We have compared the expression of bcl-2 transcripts and protein in B-CLL cells in their normal equivalent CD5+ B cells and in normal B-cell populations representative of different in vivo and in vitro stages of activation and proliferation. We report here that bcl-2 was expressed in 11 of 11 cases of CD5+ B-CLL clones, contrasting with the absent expression in normal CD5+ B cells. Activation of 173 and 183 B-CLL cells by phorbol esters (12-O-tetradecanoylphorbol-13-acetate [TPA]) to IgM secretion without concomitant DNA synthesis resulted in a rapid but transient downregulation of bcl-2 expression. In contrast, the reduction of bcl-2 at both the messenger RNA and protein levels was sustained after mitogenic stimulation, suggesting that bcl-2 expression and proliferation are inversely related in these cells. This notion was further supported by immunocytochemical analysis showing that bcl-2 was primarily expressed in small resting lymphocytes and in cells differentiating to the plasma cell stage, but less expressed in Ki67- positive proliferating B blasts. Moreover, it was also supported by the low level of bcl-2 in exponentially growing Epstein-Barr virus-carrying lymphoblastoid and B-CLL cell lines. The regulation of bcl-2 expression in B-CLL resembled that of normal tonsillar follicular B cells, in which a high level of expression was found in resting mantle zone B cells but not in the proliferating germinal center B cells. Based on these findings and the role of bcl-2 in maintaining B-cell memory, we propose that the phenotype of B-CLL cells corresponds to a mantle zone memory-type B cell.


Sign in / Sign up

Export Citation Format

Share Document