scholarly journals Anticoagulant and fibrinolytic activities are promoted, not retarded, in vivo after thrombin generation in the presence of a monoclonal antibody that inhibits activation of protein C

Blood ◽  
1992 ◽  
Vol 79 (7) ◽  
pp. 1720-1728 ◽  
Author(s):  
FB Jr Taylor ◽  
H Hoogendoorn ◽  
AC Chang ◽  
G Peer ◽  
ME Nesheim ◽  
...  

This study examines the assumption that both the anticoagulant and fibrinolytic activity that follow the generation of thrombin induced by infusion of factor Xa/PCPS are due to generation of activated protein C. Untreated controls or animals given unrelated antibody were compared with animals pretreated with a specific monoclonal antibody to protein C (HPC4). Compared with untreated controls excess HPC4 substantially reduced the level of protein C activation as observed by protein C immunoblotting and enzyme-linked immunosorbent assay for antitrypsin/activated protein C complexes. Despite this, the anticoagulant activity as reflected by the decline of factors Va and VIIIa levels (as observed by coagulation assays and by factor V immunoblotting) was significantly greater than controls. The fibrinolytic activity (as observed by assays of tissue plasminogen activator, D-Dimer, alpha 2-antiplasmin) also was significantly greater than controls. We conclude that neutralization of the protein C anticoagulant system while resulting in a significantly more intense coagulant response to Xa/PCPS does not preclude inactivation of factors Va and VIIIa and the full expression of the fibrinolytic response. We conclude further that after thrombin generation in vivo, protein C activation is not a prerequisite for the promotion of the fibrinolytic response previously observed, and that the inactivation of factors Va/VIIIa may be mediated by enzymes other than activated protein C. The reduction in alpha 2-antiplasmin levels in association with increased tissue plasminogen activator activity suggests that plasmin is a likely candidate.

Blood ◽  
1992 ◽  
Vol 79 (7) ◽  
pp. 1720-1728 ◽  
Author(s):  
FB Jr Taylor ◽  
H Hoogendoorn ◽  
AC Chang ◽  
G Peer ◽  
ME Nesheim ◽  
...  

Abstract This study examines the assumption that both the anticoagulant and fibrinolytic activity that follow the generation of thrombin induced by infusion of factor Xa/PCPS are due to generation of activated protein C. Untreated controls or animals given unrelated antibody were compared with animals pretreated with a specific monoclonal antibody to protein C (HPC4). Compared with untreated controls excess HPC4 substantially reduced the level of protein C activation as observed by protein C immunoblotting and enzyme-linked immunosorbent assay for antitrypsin/activated protein C complexes. Despite this, the anticoagulant activity as reflected by the decline of factors Va and VIIIa levels (as observed by coagulation assays and by factor V immunoblotting) was significantly greater than controls. The fibrinolytic activity (as observed by assays of tissue plasminogen activator, D-Dimer, alpha 2-antiplasmin) also was significantly greater than controls. We conclude that neutralization of the protein C anticoagulant system while resulting in a significantly more intense coagulant response to Xa/PCPS does not preclude inactivation of factors Va and VIIIa and the full expression of the fibrinolytic response. We conclude further that after thrombin generation in vivo, protein C activation is not a prerequisite for the promotion of the fibrinolytic response previously observed, and that the inactivation of factors Va/VIIIa may be mediated by enzymes other than activated protein C. The reduction in alpha 2-antiplasmin levels in association with increased tissue plasminogen activator activity suggests that plasmin is a likely candidate.


1986 ◽  
Vol 56 (02) ◽  
pp. 115-119 ◽  
Author(s):  
Eugene G Levin ◽  
David M Stern ◽  
Peter P Nawroth ◽  
Richard A Marlar ◽  
Daryl S Fair ◽  
...  

SummaryThe addition of thrombin (9 nM) to primary cultures of human endothelial cells induces a 6- to 7-fold increase in the rate of release of tissue plasminogen activator (tPA). Several other serine proteases which specifically interact with endothelial cells were also analyzed for their effect on tPA release. Gamma-thrombin, an autocatalytic product of α-thrombin, promoted tPA release but was less effective than α-thrombin. A maximum increase of 5.5-fold was observed, although a concentration of γ-thrombin 20 times greater than α-thrombin was required. The response to Factor Xa was similar to α-thrombin, although the stimulation was significantly reduced by the addition of hirudin or DAPA suggesting that prothrombin activation was occurring. The simultaneous addition of prothrombin with Factor Xa resulted in enhanced tPA release equal to that observed with an equimolar concentration of active α-thrombin. Thus, under these conditions, Factor Xa-cell surface mediated activation of prothrombin can lead to a secondary effect resulting from cell-thrombin interaction. Activated protein C, which has been implicated as a profibrinolytic agent, was also tested. No change in tPA release occurred after the addition of up to 325 nM activated protein C in the presence or absence of proteins. Factor IXa and plasmin were also ineffective. The effect of thrombin on the endothelial cell derived plasminogen activator specific inhibitor was also studied. Thrombin produced a small but variable release of the inhibitor with an increase of less than twice that of non-thrombin treated controls.


2004 ◽  
Vol 10 (12) ◽  
pp. 1379-1383 ◽  
Author(s):  
Dong Liu ◽  
Tong Cheng ◽  
Huang Guo ◽  
José A Fernández ◽  
John H Griffin ◽  
...  

2009 ◽  
Vol 28 (2) ◽  
pp. 143-150 ◽  
Author(s):  
Maite Mendioroz ◽  
Israel Fernández-Cadenas ◽  
José Alvarez-Sabín ◽  
Anna Rosell ◽  
Dorita Quiroga ◽  
...  

2006 ◽  
Vol 12 (11) ◽  
pp. 1278-1285 ◽  
Author(s):  
Tong Cheng ◽  
Anthony L Petraglia ◽  
Zhang Li ◽  
Meenakshisundaram Thiyagarajan ◽  
Zhihui Zhong ◽  
...  

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2092-2092
Author(s):  
Sean Quinn ◽  
Lacramioara Ivanciu ◽  
Robert J. Davidson ◽  
Francis Ayombil ◽  
Jeffrey Crosby ◽  
...  

Abstract Hemophilia is an X-linked bleeding disorder resulting in deficiency of FVIII (hemophilia A; HA) or FIX (HB). Despite treatment with infused FVIII or FIX, people with hemophilia still experience joint bleeding and impaired quality of life. Furthermore, the development of neutralizing antibodies to FVIII or FIX remains a major complication of therapy. To this end, several innovative therapeutic advances which rebalance the coagulation system by targeting anticoagulant pathways (antithrombin, tissue factor pathway inhibitor, and activated protein C (APC)) are particularly interesting as they should be effective for both HA and HB, with and without inhibitors, and may also be useful to treat certain rare bleeding disorders. Many of these approaches are in clinical trials and show promise. However, each of these anticoagulant pathways target multiple coagulation factors, and APC plays an important cellular signaling role. In the current study, we developed a monoclonal antibody (GB5) that targets human FV/FVa which could serve as an alternative therapeutic approach to enhance thrombin generation and prevent bleeding in different clinical situations. Monoclonal antibody GB5 was identified following screening of hybridoma clones derived from mice immunized with human FV. The initial screen identified GB5 as an antibody that could promote thrombin generation (TG) in the presence of APC. To characterize the antibody, purified GB5 was attached to a biosensor tip and evaluated using biolayer interferometry. Analysis of biosensor tracings revealed GB5 bound specifically and with high affinity to both FV (K d = 0.6 nM; 2 experiments) and FVa (K d = 0.7 nM; 2 experiments). A TG assay with pooled normal human plasma (NHP) or HA plasma in the absence or presence of APC was used to assess the functional effects of GB5. In the absence of APC, GB5 had a minimal effect on the TG profile initiated with low tissue factor (0.2 pM). As expected, the addition of APC (2 nM, final) to NHP or HA plasma substantially reduced peak thrombin. However, GB5 dose-dependently increased peak thrombin in the presence of APC in NHP or HA plasma and restored TG to normal levels at ~20 nM. GB5 also protected FV from APC when assessed using a purified prothrombin activation assay. Western blotting experiments using FV proteolyzed with thrombin, APC, or plasmin revealed that GB5 binds the light chain A3-C1-C2. Preliminary experiments revealed that GB5 does not cross react with mouse FV. To evaluate the effect of GB5 in vivo, wild-type (WT) mice were treated with a liver targeted antisense oligonucleotide (ASO) to knockdown mouse plasma FV (ASO-FV; 40 mg/kg; FV-ASO mice). Mouse platelet FV was not impacted. To supplement the plasma compartment with FV, the FV-ASO mice were administered human FV (hFV-mice). This experimental set-up allowed for clot formation to largely be dependent on hFV using the mouse laser injury model. In these studies, we compared the kinetics of thrombus formation in WT mice, FV-ASO mice, or hFV-mice (n=2-3/group; 7-10 thrombi per group) for 10-15 minutes following laser injury. We found that platelet and fibrin accumulation was robust in WT mice and almost undetectable in FV-ASO mice (consistent with the lack of plasma FV), while clot formation was low but detectable in hFV-mice. There was no obvious difference in thrombus size when GB5 was given to WT or FV-ASO mice. However, in hFV-mice (200 μg/kg hFV), GB5 increased platelet and fibrin accumulation to levels seen with WT mice. Quantitative analysis revealed that compared to hFV mice alone, GB5 increased platelet accumulation 3-fold and fibrin (3-6-fold accumulation. Significantly greater accumulation of platelets and fibrin (~30-fold) was observed when higher amounts of hFV (400 μg/kg) were co-infused with GB5 compared to hFV-mice without antibody. Together, these results demonstrate that monoclonal antibody GB5 binds to hFV/FVa with high affinity and confers APC resistance. Using a unique mouse model to assess human FV, we found that GB5 enhanced clot formation in vivo using the laser injury model. From a mechanistic standpoint, these data show that protecting FV from APC translates to greater thrombin generation in vivo and suggest this approach may be useful to treat bleeding disorders such as HA and HB. Additional injury models using the hFV-mice and hemophilic mice to assess the effectiveness of GB5 are ongoing. Disclosures Crosby: Ionis Pharmaceuticals: Other: Jeffrey is a current employee of Ionis Pharmaceuticals. Revenko: Ionis Pharmaceuticals: Other: Alexey is a current employee of the company.. MacLeod: Ionis Pharmaceuticals: Other: Robert is a current employee of the company. Monia: Ionis Pharmaceuticals: Other: Brett is a current employee of the company. .


VASA ◽  
2014 ◽  
Vol 43 (6) ◽  
pp. 450-458 ◽  
Author(s):  
Julio Flores ◽  
Ángel García-Avello ◽  
Esther Alonso ◽  
Antonio Ruíz ◽  
Olga Navarrete ◽  
...  

Background: We evaluated the diagnostic efficacy of tissue plasminogen activator (tPA), using an enzyme-linked immunosorbent assay (ELISA) and compared it with an ELISA D-dimer (VIDAS D-dimer) in acute pulmonary embolism (PE). Patients and methods: We studied 127 consecutive outpatients with clinically suspected PE. The diagnosis of PE was based on a clinical probability pretest for PE and a strict protocol of imaging studies. A plasma sample to measure the levels of tPA and D-dimer was obtained at enrollment. Diagnostic accuracy for tPA and D-dimer was determined by the area under the receiver operating characteristic (ROC) curve. Sensitivity, specificity, predictive values, and the diagnostic utility of tPA with a cutoff of 8.5 ng/mL and D-dimer with a cutoff of 500 ng/mL, were calculated for PE diagnosis. Results: PE was confirmed in 41 patients (32 %). Areas under ROC curves were 0.86 for D-dimer and 0.71 for tPA. The sensitivity/negative predictive value for D-dimer using a cutoff of 500 ng/mL, and tPA using a cutoff of 8.5 ng/mL, were 95 % (95 % CI, 88–100 %)/95 % (95 % CI, 88–100 %) and 95 % (95 % CI, 88–100 %)/94 %), respectively. The diagnostic utility to exclude PE was 28.3 % (95 % CI, 21–37 %) for D-dimer and 24.4 % (95 % CI, 17–33 %) for tPA. Conclusions: The tPA with a cutoff of 8.5 ng/mL has a high sensitivity and negative predictive value for exclusion of PE, similar to those observed for the VIDAS D-dimer with a cutoff of 500 ng/mL, although the diagnostic utility was slightly higher for the D-dimer.


Sign in / Sign up

Export Citation Format

Share Document