scholarly journals Protection of Human Factor V from Activated Protein C Using a Monoclonal Antibody-Biochemical Characterization and Evaluation Using a Mouse Injury Model

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2092-2092
Author(s):  
Sean Quinn ◽  
Lacramioara Ivanciu ◽  
Robert J. Davidson ◽  
Francis Ayombil ◽  
Jeffrey Crosby ◽  
...  

Abstract Hemophilia is an X-linked bleeding disorder resulting in deficiency of FVIII (hemophilia A; HA) or FIX (HB). Despite treatment with infused FVIII or FIX, people with hemophilia still experience joint bleeding and impaired quality of life. Furthermore, the development of neutralizing antibodies to FVIII or FIX remains a major complication of therapy. To this end, several innovative therapeutic advances which rebalance the coagulation system by targeting anticoagulant pathways (antithrombin, tissue factor pathway inhibitor, and activated protein C (APC)) are particularly interesting as they should be effective for both HA and HB, with and without inhibitors, and may also be useful to treat certain rare bleeding disorders. Many of these approaches are in clinical trials and show promise. However, each of these anticoagulant pathways target multiple coagulation factors, and APC plays an important cellular signaling role. In the current study, we developed a monoclonal antibody (GB5) that targets human FV/FVa which could serve as an alternative therapeutic approach to enhance thrombin generation and prevent bleeding in different clinical situations. Monoclonal antibody GB5 was identified following screening of hybridoma clones derived from mice immunized with human FV. The initial screen identified GB5 as an antibody that could promote thrombin generation (TG) in the presence of APC. To characterize the antibody, purified GB5 was attached to a biosensor tip and evaluated using biolayer interferometry. Analysis of biosensor tracings revealed GB5 bound specifically and with high affinity to both FV (K d = 0.6 nM; 2 experiments) and FVa (K d = 0.7 nM; 2 experiments). A TG assay with pooled normal human plasma (NHP) or HA plasma in the absence or presence of APC was used to assess the functional effects of GB5. In the absence of APC, GB5 had a minimal effect on the TG profile initiated with low tissue factor (0.2 pM). As expected, the addition of APC (2 nM, final) to NHP or HA plasma substantially reduced peak thrombin. However, GB5 dose-dependently increased peak thrombin in the presence of APC in NHP or HA plasma and restored TG to normal levels at ~20 nM. GB5 also protected FV from APC when assessed using a purified prothrombin activation assay. Western blotting experiments using FV proteolyzed with thrombin, APC, or plasmin revealed that GB5 binds the light chain A3-C1-C2. Preliminary experiments revealed that GB5 does not cross react with mouse FV. To evaluate the effect of GB5 in vivo, wild-type (WT) mice were treated with a liver targeted antisense oligonucleotide (ASO) to knockdown mouse plasma FV (ASO-FV; 40 mg/kg; FV-ASO mice). Mouse platelet FV was not impacted. To supplement the plasma compartment with FV, the FV-ASO mice were administered human FV (hFV-mice). This experimental set-up allowed for clot formation to largely be dependent on hFV using the mouse laser injury model. In these studies, we compared the kinetics of thrombus formation in WT mice, FV-ASO mice, or hFV-mice (n=2-3/group; 7-10 thrombi per group) for 10-15 minutes following laser injury. We found that platelet and fibrin accumulation was robust in WT mice and almost undetectable in FV-ASO mice (consistent with the lack of plasma FV), while clot formation was low but detectable in hFV-mice. There was no obvious difference in thrombus size when GB5 was given to WT or FV-ASO mice. However, in hFV-mice (200 μg/kg hFV), GB5 increased platelet and fibrin accumulation to levels seen with WT mice. Quantitative analysis revealed that compared to hFV mice alone, GB5 increased platelet accumulation 3-fold and fibrin (3-6-fold accumulation. Significantly greater accumulation of platelets and fibrin (~30-fold) was observed when higher amounts of hFV (400 μg/kg) were co-infused with GB5 compared to hFV-mice without antibody. Together, these results demonstrate that monoclonal antibody GB5 binds to hFV/FVa with high affinity and confers APC resistance. Using a unique mouse model to assess human FV, we found that GB5 enhanced clot formation in vivo using the laser injury model. From a mechanistic standpoint, these data show that protecting FV from APC translates to greater thrombin generation in vivo and suggest this approach may be useful to treat bleeding disorders such as HA and HB. Additional injury models using the hFV-mice and hemophilic mice to assess the effectiveness of GB5 are ongoing. Disclosures Crosby: Ionis Pharmaceuticals: Other: Jeffrey is a current employee of Ionis Pharmaceuticals. Revenko: Ionis Pharmaceuticals: Other: Alexey is a current employee of the company.. MacLeod: Ionis Pharmaceuticals: Other: Robert is a current employee of the company. Monia: Ionis Pharmaceuticals: Other: Brett is a current employee of the company. .

Blood ◽  
1992 ◽  
Vol 79 (7) ◽  
pp. 1720-1728 ◽  
Author(s):  
FB Jr Taylor ◽  
H Hoogendoorn ◽  
AC Chang ◽  
G Peer ◽  
ME Nesheim ◽  
...  

Abstract This study examines the assumption that both the anticoagulant and fibrinolytic activity that follow the generation of thrombin induced by infusion of factor Xa/PCPS are due to generation of activated protein C. Untreated controls or animals given unrelated antibody were compared with animals pretreated with a specific monoclonal antibody to protein C (HPC4). Compared with untreated controls excess HPC4 substantially reduced the level of protein C activation as observed by protein C immunoblotting and enzyme-linked immunosorbent assay for antitrypsin/activated protein C complexes. Despite this, the anticoagulant activity as reflected by the decline of factors Va and VIIIa levels (as observed by coagulation assays and by factor V immunoblotting) was significantly greater than controls. The fibrinolytic activity (as observed by assays of tissue plasminogen activator, D-Dimer, alpha 2-antiplasmin) also was significantly greater than controls. We conclude that neutralization of the protein C anticoagulant system while resulting in a significantly more intense coagulant response to Xa/PCPS does not preclude inactivation of factors Va and VIIIa and the full expression of the fibrinolytic response. We conclude further that after thrombin generation in vivo, protein C activation is not a prerequisite for the promotion of the fibrinolytic response previously observed, and that the inactivation of factors Va/VIIIa may be mediated by enzymes other than activated protein C. The reduction in alpha 2-antiplasmin levels in association with increased tissue plasminogen activator activity suggests that plasmin is a likely candidate.


Blood ◽  
1992 ◽  
Vol 79 (7) ◽  
pp. 1720-1728 ◽  
Author(s):  
FB Jr Taylor ◽  
H Hoogendoorn ◽  
AC Chang ◽  
G Peer ◽  
ME Nesheim ◽  
...  

This study examines the assumption that both the anticoagulant and fibrinolytic activity that follow the generation of thrombin induced by infusion of factor Xa/PCPS are due to generation of activated protein C. Untreated controls or animals given unrelated antibody were compared with animals pretreated with a specific monoclonal antibody to protein C (HPC4). Compared with untreated controls excess HPC4 substantially reduced the level of protein C activation as observed by protein C immunoblotting and enzyme-linked immunosorbent assay for antitrypsin/activated protein C complexes. Despite this, the anticoagulant activity as reflected by the decline of factors Va and VIIIa levels (as observed by coagulation assays and by factor V immunoblotting) was significantly greater than controls. The fibrinolytic activity (as observed by assays of tissue plasminogen activator, D-Dimer, alpha 2-antiplasmin) also was significantly greater than controls. We conclude that neutralization of the protein C anticoagulant system while resulting in a significantly more intense coagulant response to Xa/PCPS does not preclude inactivation of factors Va and VIIIa and the full expression of the fibrinolytic response. We conclude further that after thrombin generation in vivo, protein C activation is not a prerequisite for the promotion of the fibrinolytic response previously observed, and that the inactivation of factors Va/VIIIa may be mediated by enzymes other than activated protein C. The reduction in alpha 2-antiplasmin levels in association with increased tissue plasminogen activator activity suggests that plasmin is a likely candidate.


Blood ◽  
2004 ◽  
Vol 104 (13) ◽  
pp. 3958-3964 ◽  
Author(s):  
Patricia C. Y. Liaw ◽  
Charles T. Esmon ◽  
Kamyar Kahnamoui ◽  
Shelley Schmidt ◽  
Sarah Kahnamoui ◽  
...  

Abstract Activated protein C (APC) supplementation significantly reduces mortality in patients with severe sepsis, presumably by down-regulating coagulation, inflammation, and apoptosis. In vivo, endogenous APC is generated from protein C (PC) “on demand” in response to elevated thrombin levels. Thrombomodulin and endothelial cell protein C receptor are endothelial receptors required to generate APC endogenously. Since these receptors may be down-regulated in sepsis, we measured plasma markers of APC generation in 32 patients with severe sepsis to determine whether APC generation is impaired and whether markers of APC generation correlate with 28-day mortality. Relative to normals, all patients had elevated F1 + 2 and thrombin-antithrombin complex (TAT) levels (markers of thrombin generation and inhibition, respectively), and 28 of 32 patients had reduced PC levels. In 20 patients, APC levels paralleled elevated F1 + 2 levels, whereas 12 patients had low APC levels despite elevated F1 + 2 levels, suggesting that APC generation is impaired in the latter. No significant differences exist between survivors and nonsurvivors with respect to baseline PC levels, F1 + 2 levels, and APACHE II (acute physiology and chronic health evaluation) scores. Baseline APC levels were higher in survivors (P = .024), and baseline F1 + 2/APC ratios were lower in survivors (P = .047). Larger studies are warranted to establish whether APC generation profiles aid in managing sepsis. (Blood. 2004;104:3958-3964)


Blood ◽  
2000 ◽  
Vol 96 (4) ◽  
pp. 1594-1595
Author(s):  
Rie Takeuchi ◽  
Tatsuya Atsumi ◽  
Masahiro Ieko ◽  
Hiroyuki Takeya ◽  
Shinsuke Yasuda ◽  
...  

β2-Glycoprotein I (β2GPI) is a major antigen for antiphospholipid antibodies, and its multiple in vitro functions have been reported. This glycoprotein not only down-regulates thrombin formation by inhibiting contact activation or prothrombinase activity, but also up-regulates coagulation by reducing protein C anticoagulant activity. However, the in vivo roles of β2GPI remain obscure. Coagulation and fibrinolytic characteristics were investigated in individuals with β2GPI deficiency. An apparently healthy woman and her brother are homozygotes for β2GPI deficiency. In these patients, Russell viper venom time was shortened (40.4 seconds; normal range, 47.8 ± 4.95 seconds), but all markers of thrombin generation and fibrin turnover were within normal ranges. Exogenous activated protein C adequately prolonged the clotting time of the β2GPI-deficient plasma, and euglobulin lysis time was also normal. Thus, elevated thrombin generation, enhancement of activated protein C response, and an altered fibrinolytic system were not found in congenitally β2GPI-deficient plasma.


Blood ◽  
2021 ◽  
Author(s):  
Tanya T. Marar ◽  
Chelsea N. Matzko ◽  
Jie Wu ◽  
Charles Esmon ◽  
Talid Sinno ◽  
...  

Rebalancing of the hemostatic system by targeting endogenous anticoagulant pathways, like the Protein C system, is being tested as a means of improving hemostasis in patients with hemophilia. Recent intravital studies of hemostasis demonstrated that, in some vascular contexts, thrombin activity is sequestered to the extravascular compartment. These findings raise important questions about the context-dependent contribution of activated Protein C (aPC) to the hemostatic response since Protein C activation occurs on the surface of endothelial cells. Here, we used a combination of pharmacologic, genetic, imaging, and computational approaches to examine the relationships among thrombin spatial distribution, Protein C activation, and aPC anticoagulant function. We found that inhibition of aPC activity, either in mice harboring the Factor V-Leiden mutation or infused with an aPC blocking antibody, significantly enhanced fibrin formation and platelet activation in a microvascular injury model, consistent with aPC's role as an anticoagulant. In contrast, inhibition of aPC activity had no effect on hemostasis following penetrating injury of the mouse jugular vein. Computational studies showed that differences in blood velocity, injury size, and vessel geometry determine the localization of thrombin generation and, consequently, the extent of Protein C activation. Computational predictions were tested in vivo and showed that when thrombin generation occurred intravascularly, without penetration of the vessel wall, inhibition of aPC significantly increased fibrin formation in the jugular vein. Together, these studies show the importance of thrombin spatial distribution in determining Protein C activation during hemostasis and thrombosis.


Blood ◽  
2002 ◽  
Vol 100 (2) ◽  
pp. 539-546 ◽  
Author(s):  
Julie A. Oliver ◽  
Dougald M. Monroe ◽  
Frank C. Church ◽  
Harold R. Roberts ◽  
Maureane Hoffman

Abstract The protein C/protein S system is known to regulate thrombin generation in vivo by cleaving factors Va and VIIIa. We have examined the activity of activated protein C in several tissue factor–initiated models of coagulation. We used 4 models: monocytes as the tissue factor source with platelets as the thrombin-generating surface; endothelial cells as the tissue factor source with platelets as the thrombin-generating surface; endothelial cells as both the tissue factor source and the thrombin-generating surface; and relipidated tissue factor with lipid vesicles providing the surface for thrombin generation. With the lipid surface, activated protein C dose-dependently reduced thrombin generation. Similarly, when endothelial cells provided the only surface for thrombin generation, activated protein C dose-dependently decreased thrombin generation significantly. By contrast, whenever platelets were present, activated protein C only minimally affected the amount of thrombin generated. When endothelial cells were the tissue factor source with platelets providing the surface for thrombin generation, activated protein C did increase the time until the burst of thrombin generation but had minimal effects on the total amount of thrombin generated. Activated protein C had essentially no effect on thrombin generation when monocytes were the tissue factor source with platelets providing the surface for thrombin generation. From the studies reported here, we conclude that in vivo, despite the important role of the protein C system in regulating thrombosis, activated protein C does not serve as a primary regulator of platelet-dependent thrombin generation.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 80-80 ◽  
Author(s):  
Xiao-Yan Zhao ◽  
Subramanian Yegneswaran ◽  
Maxine Bauzon ◽  
Derek Sim ◽  
Chandra Patel ◽  
...  

Abstract In patients with hemophilia, hereditary defects in coagulation factors result in unstable clots and recurrent bleeding. Although the current standard of care focuses on replacement factor therapy, we propose that inhibition of the anticoagulant pathways may offer novel therapeutic opportunities. Activated protein C (APC) is one of the major anticoagulants, which works by degrading factors Va and VIIIa to maintain hemostatic balance. APC also exhibits cytoprotective effects, which include antiapoptotic effects, endothelial barrier protection, and anti-inflammatory effects. Antibodies are ideally suited to inhibit the anticoagulant activity of APC while preserving its cytoprotective activity. We have developed an anti-APC monoclonal antibody (mAb), HAPC1573 (murine immunoglubulin G1/kappa), using hybridoma technology, that specifically binds to human APC (hAPC) at 3 to 7 nM binding affinity (Kd) but not to its zymogen, protein C (PC) as determined by surface plasmon resonance (SPR) using a Biacore T200 instrument (GE Healthcare, Pittsburgh, PA). To investigate the binding epitope of mAb HAPC1573, APC was inhibited with Phe-Pro-Arg-chloromethylketone (PPACK). PPACK is an irreversible inhibitor of APC and forms a covalent bond with the catalytic triad Ser195 (chymotrypsin numbering). HAPC1573 bound comparably to PPACK-hAPC and untreated hAPC coated on an enzyme-linked immunosorbent assay (ELISA) plate, suggesting that the binding epitope of HAPC1573 is located outside the active site of APC. These ELISA results were also confirmed by SPR analyses. HAPC1573 inhibited the cleavage of a small peptide substrate Spectrozyme PCa (Sekisui Diagnostics, Lexington, MA) by hAPC up to 40%. The antibody protected factors Va and VIIIa from APC-mediated inactivation in a dose-dependent manner. HAPC1573 significantly reduced activated partial thromboplastin time of hemophilic plasma and enhanced thrombin generation (assessed by thrombin generation assay) in the presence of thrombomodulin. HAPC1573 inhibited the anticoagulant activity of APC without affecting its cytoprotective functions, as measured by histone-mediated cytotoxicity assays on human umbilical vein endothelial cells (up to 300 nM HAPC1573). Given its cross-reactivity with monkey APC, the antibody was evaluated in Cynomolgus monkeys for therapeutic efficacy and safety. Intravenous administration of the antibody at 3 and 10 mg/kg significantly shortened bleeding time after injury and restored hemostasis in a dose-dependent manner in an anti-FVIII antibody-induced hemophilia monkey model (Figure). Administration of a sheep-anti-FVIII antibody (Haematologic Technologies, Inc., Essex Junction, VT) reduced plasma FVIIIa activity to below the lower limit of quantification (LLOQ; Figure [left panel]) and led to a significantly longer bleeding time in normal monkeys (Figure; right panel), recapitulating the hemophilia A phenotype. This prolonged bleeding time was partially reduced by 270 µg/kg of recombinant factor VIIa (rFVIIa; NovoSeven, Novo Nordisk, Plainsboro, NJ) used as a positive control for these studies. There was a statistically significant dose-dependent reduction in bleeding time by HAPC1573 with the 10-mg/kg dose restoring the bleeding time back to normal. This study provides in vivo proof of concept of using anti-APC antibody for hemophilia. HAPC1573 represents an anti-APC antibody with therapeutic utility for patients with hemophilia with inhibitors. Figure The efficacy of HAPC1573 evaluated in an anti-FVIII antibody-induced hemophilia monkey model. Figure. The efficacy of HAPC1573 evaluated in an anti-FVIII antibody-induced hemophilia monkey model. Disclosures Zhao: Bayer Pharmaceuticals: Employment. Yegneswaran:Bayer Healthcare Pharmaceuticals: Employment. Sim:Bayer: Employment. Patel:Bayer Pharmaceuticals: Employment. Schneider:Bayer HealthCare LLC: Employment, Patents & Royalties. McLean:Bayer: Employment, Equity Ownership. Zhu:Bayer Healthcare: Employment. Jiang:Bayer Pharmaceuticals: Employment. Gu:Bayer Pharmaceuticals: Employment. Ivens:Bayer Pharmaceuticals: Employment. Xu:Shanghai RAAS Blood Products Co.Lt: Employment, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties: Patent. Bringmann:Bayer Corporation, Parmaceuticals Division: Employment. Kauser:Bayer: Employment.


Blood ◽  
2000 ◽  
Vol 96 (4) ◽  
pp. 1594-1595 ◽  
Author(s):  
Rie Takeuchi ◽  
Tatsuya Atsumi ◽  
Masahiro Ieko ◽  
Hiroyuki Takeya ◽  
Shinsuke Yasuda ◽  
...  

Abstract β2-Glycoprotein I (β2GPI) is a major antigen for antiphospholipid antibodies, and its multiple in vitro functions have been reported. This glycoprotein not only down-regulates thrombin formation by inhibiting contact activation or prothrombinase activity, but also up-regulates coagulation by reducing protein C anticoagulant activity. However, the in vivo roles of β2GPI remain obscure. Coagulation and fibrinolytic characteristics were investigated in individuals with β2GPI deficiency. An apparently healthy woman and her brother are homozygotes for β2GPI deficiency. In these patients, Russell viper venom time was shortened (40.4 seconds; normal range, 47.8 ± 4.95 seconds), but all markers of thrombin generation and fibrin turnover were within normal ranges. Exogenous activated protein C adequately prolonged the clotting time of the β2GPI-deficient plasma, and euglobulin lysis time was also normal. Thus, elevated thrombin generation, enhancement of activated protein C response, and an altered fibrinolytic system were not found in congenitally β2GPI-deficient plasma.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2386-2386
Author(s):  
Xian Li ◽  
Sara J Bidarian ◽  
Martha Sim ◽  
Xiaohong Song ◽  
Jeremy P. Wood

Background: Protein S (PS), a vitamin K-dependent plasma glycoprotein, functions as a cofactor for the anticoagulants activated protein C (APC) and tissue factor (TF) pathway inhibitor alpha (TFPIa), which inhibit factors Va (FVa) and Xa (FXa), respectively. Although it is unclear which of these functions is/are important in vivo, homozygous deficiency of PS is associated with life-threatening thrombosis shortly after birth. FVa and FXa form the prothrombinase complex, which generates thrombin, suggesting that PS has a role in the direct inhibition of thrombin production. However, neither the PS/APC nor PS/TFPIα system alone is effective at inhibiting thrombin generation by prothrombinase. In addition to its role in regulating coagulation, PS also functions as an inhibitor of the complement system. Approximately 60% of plasma PS circulates bound to complement factor C4bp, which blocks its anticoagulant activity. We sought to determine the impact of PS/APC on TFPIα function, and vice versa, using purified protein and plasma-based systems. Methods and Results: To assess the effect of the combined PS/APC and PS/TFPIα systems on thrombin generation, we supplemented plasma with thrombomodulin, which promotes APC activation. In the absence of thrombomodulin, 5nM TFPIα decreased peak thrombin by 55.1% (33.1±1.9 nM in the presence of TFPIα vs. 73.7±39.9 nM in the absence) and endogenous thrombin potential (ETP) by 35.4% (475±42 nM*min vs. 735±189nM*min). In the presence of thrombomodulin, TFPIα decreased these parameters by 65.7% (11.4 ± 2.6 nM) and 77.5% (107±22 nM*min), respectively, suggesting that APC makes TFPIα a more potent inhibitor of thrombin generation. We next sought to study each of these PS functions in a purified protein system and in plasma. To study the effect of PS/APC on TFPIα function, we produced a recombinant protein consisting of the first two epidermal growth factor-like domains of PS (EGF1-2), which contain the putative APC binding sites. In a purified protein assay, APC inhibited the rate of thrombin activation by prothrombinase by 19.62±0.01% in the absence of PS and by 34.96±0.02% in the presence of 50nM PS. EGF1-2 dose-dependently reversed the effect of PS, with 75% reversal achieved with the addition of 200nM EGF1-2. Unexpectedly, EGF1-2 had the opposite effect in plasma thrombin generation assays and potently inhibited TF-initiated thrombin generation either in the presence or absence of thrombomodulin. We hypothesize that the EGF1-2 domains also form part of the C4bp binding site, and that addition of EGF1-2 protein resulted in release of PS from C4bp and an increase in the anticoagulant PS pool. In support of this hypothesis, EGF1-2 had no effect on thrombin generation in PS-depleted plasma, which is also depleted of C4bp. When the PS-depleted plasma was supplemented with 150nM PS, EGF1-2 had the expected procoagulant activity (increasing peak thrombin from 50.4±19.9 nM to 90.4±6.0 nM). Notably, even with a saturating concentration of EGF1-2, thrombomodulin and PS significantly decreased thrombin generation, suggesting that PS-TFPIα-mediated FXa inhibition promotes APC-mediated FVa degradation, even if PS cannot directly bind APC. We similarly assessed the impact of the PS-TFPI function, using a protein from the saliva of black flies, "black fly protease inhibitor" (BFPI), which contains the TFPIα domain that inhibits FXa but lacks the domain that binds PS. BFPI inhibits free FXa similarly to TFPIα, but PS does not promote this inhibition. Like TFPIα, BFPI is a poor inhibitor of thrombin generation by prothrombinase containing thrombin-activated FVa (5 nM BFPI had no impact on thrombin generation in the presence or absence of PS). However, in the presence of APC and PS, 5nM BFPI decreased the maximum rate of thrombin generation by 17.3±3.3%. These data suggest that PS/APC-mediated degradation of FVa promotes TFPIα-mediated inhibition of FXa, regardless of whether PS is able to bind TFPIα. Conclusions: Our data suggest that the PS-APC and PS-TFPIα systems cooperatively regulate thrombin generation by prothrombinase. While maximal inhibition requires that PS act as a cofactor for both APC and TFPIα, PS-APC independently promotes TFPIα function, and PS-TFPIα separately promotes APC. Based on these data, we propose a model in which PS-APC-mediated inhibition of FVa renders FXa susceptible to TFPIα and vice versa. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document