scholarly journals Solvent/detergent-treated plasma suppresses shear-induced platelet aggregation and prevents episodes of thrombotic thrombocytopenic purpura

Blood ◽  
1994 ◽  
Vol 84 (2) ◽  
pp. 490-497 ◽  
Author(s):  
J Moake ◽  
M Chintagumpala ◽  
N Turner ◽  
P McPherson ◽  
L Nolasco ◽  
...  

Two children with congenital chronic relapsing thrombotic thrombocytopenic purpura (TTP) have episodes every 3 weeks. These relapses can be prevented by the infusion of normal fresh-frozen plasma (FFP) without concurrent plasmapheresis. We conducted a study to determine whether the exposure of normal plasma to agents that inactivate human immunodeficiency virus and other viruses destroys the component necessary for the effective treatment of this type of TTP that requires only plasma infusion to prevent or reverse relapses. Clinical responsiveness and von Willebrand factor (vWF)-mediated fluid shear stress-induced platelet aggregation were evaluated before and after the infusion of 10 mL/kg FFP or solvent [tri(n- butyl)phosphate]/detergent (Triton X-100)-treated plasma (S/D plasma). Platelet aggregation at shear stresses of 90 to 180 dyne/cm2 (similar to those in the partially occluded microcirculation) imposed for 30 seconds was excessive using the citrated platelet-rich plasma of both patients, and was associated with the presence of unusually large vWF forms in patient platelet-poor plasma. Infusion with either FFP or S/D plasma at 3-week intervals caused the platelet count to increase to (or above) normal within 1 week (on 12 of 12 occasions); the disappearance or diminution of unusually large vWF forms within 1 hour (on 6 of 10 occasions studied); and the reversal within 1 to 4 hours of excessive shear-induced platelet aggregation (on 8 of 9 occasions studied). We conclude that a component in normal plasma resistant to S/D treatment is responsible for preventing thrombocytopenia and TTP episodes, and for controlling excessive shear-induced aggregation in these patients. Our results suggest that excessive in vivo platelet aggregation in chronic relapsing TTP and excessive in vitro vWF-mediated shear-induced aggregation may be similar phenomena.

Blood ◽  
1994 ◽  
Vol 84 (2) ◽  
pp. 490-497 ◽  
Author(s):  
J Moake ◽  
M Chintagumpala ◽  
N Turner ◽  
P McPherson ◽  
L Nolasco ◽  
...  

Abstract Two children with congenital chronic relapsing thrombotic thrombocytopenic purpura (TTP) have episodes every 3 weeks. These relapses can be prevented by the infusion of normal fresh-frozen plasma (FFP) without concurrent plasmapheresis. We conducted a study to determine whether the exposure of normal plasma to agents that inactivate human immunodeficiency virus and other viruses destroys the component necessary for the effective treatment of this type of TTP that requires only plasma infusion to prevent or reverse relapses. Clinical responsiveness and von Willebrand factor (vWF)-mediated fluid shear stress-induced platelet aggregation were evaluated before and after the infusion of 10 mL/kg FFP or solvent [tri(n- butyl)phosphate]/detergent (Triton X-100)-treated plasma (S/D plasma). Platelet aggregation at shear stresses of 90 to 180 dyne/cm2 (similar to those in the partially occluded microcirculation) imposed for 30 seconds was excessive using the citrated platelet-rich plasma of both patients, and was associated with the presence of unusually large vWF forms in patient platelet-poor plasma. Infusion with either FFP or S/D plasma at 3-week intervals caused the platelet count to increase to (or above) normal within 1 week (on 12 of 12 occasions); the disappearance or diminution of unusually large vWF forms within 1 hour (on 6 of 10 occasions studied); and the reversal within 1 to 4 hours of excessive shear-induced platelet aggregation (on 8 of 9 occasions studied). We conclude that a component in normal plasma resistant to S/D treatment is responsible for preventing thrombocytopenia and TTP episodes, and for controlling excessive shear-induced aggregation in these patients. Our results suggest that excessive in vivo platelet aggregation in chronic relapsing TTP and excessive in vitro vWF-mediated shear-induced aggregation may be similar phenomena.


Blood ◽  
1987 ◽  
Vol 69 (3) ◽  
pp. 924-928 ◽  
Author(s):  
JG Kelton ◽  
JC Moore ◽  
WG Murphy

Many patients with thrombotic thrombocytopenic purpura (TTP) have a platelet aggregating factor in their serum that may be pathologically linked with the disease process. To help characterize the type of platelet aggregation and platelet release induced by the sera from seven TTP patients, we measured the ability of a variety of inhibitors of platelet function as well as the ability of monoclonal antibodies (MoAbs) against platelet glycoproteins to inhibit TTP sera-induced platelet aggregation and release. These results were compared with the ability of the same inhibitors to block platelet aggregation induced by ristocetin, collagen, ADP, thrombin, and IgG-immune complexes. Monoclonal antibody directed against platelet glycoprotein Ib totally inhibited ristocetin-induced aggregation and release but had no effect on aggregation and release induced by the TTP sera or by any of the other platelet agonists. However, the MoAb against glycoproteins IIb/IIIa inhibited aggregation and release caused by TTP sera as well as by collagen, thrombin, and ADP but had no effect on aggregation and release induced by ristocetin. The aggregating activity could be abolished by heparin but not by the serine protease inhibitor PMSF (1 mmol/L). And although monomeric human IgG and purified Fc fragments of IgG inhibited IgG-immune complex-induced aggregation and release, they had no effect on TTP sera-induced aggregation and release nor on aggregation and release induced by any of the other agonists. Consistent with these in vitro studies showing no effect of IgG were the in vivo observations that intravenous (IV) IgG was without effect when administered to three patients with TTP. This study indicates that although a von Willebrand factor (vWF)-rich preparation of cryoprecipitate enhances the in vitro platelet aggregation and release caused by sera from the seven TTP patients we studied, the pathway of aggregation and release is not via platelet glycoprotein Ib. Also the aggregating factor of TTP sera is not neutralized in vitro or in vivo by IgG.


Blood ◽  
1987 ◽  
Vol 69 (3) ◽  
pp. 924-928 ◽  
Author(s):  
JG Kelton ◽  
JC Moore ◽  
WG Murphy

Abstract Many patients with thrombotic thrombocytopenic purpura (TTP) have a platelet aggregating factor in their serum that may be pathologically linked with the disease process. To help characterize the type of platelet aggregation and platelet release induced by the sera from seven TTP patients, we measured the ability of a variety of inhibitors of platelet function as well as the ability of monoclonal antibodies (MoAbs) against platelet glycoproteins to inhibit TTP sera-induced platelet aggregation and release. These results were compared with the ability of the same inhibitors to block platelet aggregation induced by ristocetin, collagen, ADP, thrombin, and IgG-immune complexes. Monoclonal antibody directed against platelet glycoprotein Ib totally inhibited ristocetin-induced aggregation and release but had no effect on aggregation and release induced by the TTP sera or by any of the other platelet agonists. However, the MoAb against glycoproteins IIb/IIIa inhibited aggregation and release caused by TTP sera as well as by collagen, thrombin, and ADP but had no effect on aggregation and release induced by ristocetin. The aggregating activity could be abolished by heparin but not by the serine protease inhibitor PMSF (1 mmol/L). And although monomeric human IgG and purified Fc fragments of IgG inhibited IgG-immune complex-induced aggregation and release, they had no effect on TTP sera-induced aggregation and release nor on aggregation and release induced by any of the other agonists. Consistent with these in vitro studies showing no effect of IgG were the in vivo observations that intravenous (IV) IgG was without effect when administered to three patients with TTP. This study indicates that although a von Willebrand factor (vWF)-rich preparation of cryoprecipitate enhances the in vitro platelet aggregation and release caused by sera from the seven TTP patients we studied, the pathway of aggregation and release is not via platelet glycoprotein Ib. Also the aggregating factor of TTP sera is not neutralized in vitro or in vivo by IgG.


Blood ◽  
1988 ◽  
Vol 71 (5) ◽  
pp. 1366-1374 ◽  
Author(s):  
JL Moake ◽  
NA Turner ◽  
NA Stathopoulos ◽  
L Nolasco ◽  
JD Hellums

Abstract Fluid shear stress in arteries and arterioles partially obstructed by atherosclerosis or spasm may exceed the normal time-average level of 20 dyne/cm2. In vitro, at fluid shear stresses of 30 to 60 dyne/cm2 applied for 30 seconds, platelet aggregation occurs. At these shear stresses, either large or unusually large von Willebrand factor (vWF) multimers in the suspending fluid exogenous to the platelets mediates aggregation. Adenosine diphosphate (ADP) is also required and, in these experiments, was released from the platelets subjected to shear stress. At 120 dyne/cm2, the release of endogenous platelet vWF multimers can substitute for exogenous large or unusually large vWF forms in mediating aggregation. Endogenous released platelet vWF forms, as well as exogenous large or unusually large vWF multimers, must bind to both glycoproteins Ib and the IIb/IIIa complex to produce aggregation. Shear- induced aggregation is the result of shear stress alteration of platelet surfaces, rather than of shear effects on vWF multimers. It is mediated by either large plasma-type vWF multimers, endogenous released platelet vWF forms, or unusually large vWF multimers derived from endothelial cells, requires ADP, and is not inhibited significantly by aspirin. This type of aggregation may be important in platelet thrombus formation within narrowed arterial vessels, and may explain the limited therapeutic utility of aspirin in arterial thrombosis.


Blood ◽  
1979 ◽  
Vol 53 (2) ◽  
pp. 333-338 ◽  
Author(s):  
EC Lian ◽  
DR Harkness ◽  
JJ Byrnes ◽  
H Wallach ◽  
R Nunez

Three patients with thrombotic thrombocytopenic purpura (TTP) were treated by infusion of normal plasma with dramatic responses. The plasmas collected from these patients during relapse induced in vitro aggregation of washed platelets from both normal donors and the patients during remission. The platelet aggregating factor was not dialyzable or adsorbable by Al(OH)3 and was not inactivated by diisopropylfluorophosphate, hirudin, or heparin in the presence of normal amounts of antithrombin. In contrast to the platelet aggregation induced by platelet isoantibody, the platelet aggregating activity of TTP plasma diminished as a function of time when it was incubated with normal plasma at 37 degrees C. These observations suggest that at least some instances of TTP appear to be due to deficiency of a plasma inhibitor to counteract a platelet aggregating factor demonstrated to be present in the plasma of these patients.


Blood ◽  
1979 ◽  
Vol 53 (2) ◽  
pp. 333-338 ◽  
Author(s):  
EC Lian ◽  
DR Harkness ◽  
JJ Byrnes ◽  
H Wallach ◽  
R Nunez

Abstract Three patients with thrombotic thrombocytopenic purpura (TTP) were treated by infusion of normal plasma with dramatic responses. The plasmas collected from these patients during relapse induced in vitro aggregation of washed platelets from both normal donors and the patients during remission. The platelet aggregating factor was not dialyzable or adsorbable by Al(OH)3 and was not inactivated by diisopropylfluorophosphate, hirudin, or heparin in the presence of normal amounts of antithrombin. In contrast to the platelet aggregation induced by platelet isoantibody, the platelet aggregating activity of TTP plasma diminished as a function of time when it was incubated with normal plasma at 37 degrees C. These observations suggest that at least some instances of TTP appear to be due to deficiency of a plasma inhibitor to counteract a platelet aggregating factor demonstrated to be present in the plasma of these patients.


Blood ◽  
1988 ◽  
Vol 71 (5) ◽  
pp. 1366-1374 ◽  
Author(s):  
JL Moake ◽  
NA Turner ◽  
NA Stathopoulos ◽  
L Nolasco ◽  
JD Hellums

Fluid shear stress in arteries and arterioles partially obstructed by atherosclerosis or spasm may exceed the normal time-average level of 20 dyne/cm2. In vitro, at fluid shear stresses of 30 to 60 dyne/cm2 applied for 30 seconds, platelet aggregation occurs. At these shear stresses, either large or unusually large von Willebrand factor (vWF) multimers in the suspending fluid exogenous to the platelets mediates aggregation. Adenosine diphosphate (ADP) is also required and, in these experiments, was released from the platelets subjected to shear stress. At 120 dyne/cm2, the release of endogenous platelet vWF multimers can substitute for exogenous large or unusually large vWF forms in mediating aggregation. Endogenous released platelet vWF forms, as well as exogenous large or unusually large vWF multimers, must bind to both glycoproteins Ib and the IIb/IIIa complex to produce aggregation. Shear- induced aggregation is the result of shear stress alteration of platelet surfaces, rather than of shear effects on vWF multimers. It is mediated by either large plasma-type vWF multimers, endogenous released platelet vWF forms, or unusually large vWF multimers derived from endothelial cells, requires ADP, and is not inhibited significantly by aspirin. This type of aggregation may be important in platelet thrombus formation within narrowed arterial vessels, and may explain the limited therapeutic utility of aspirin in arterial thrombosis.


1995 ◽  
Vol 73 (03) ◽  
pp. 472-477 ◽  
Author(s):  
H R Lijnen ◽  
B Van Hoef ◽  
D Collen

SummaryThe interactions of recombinant staphylokinase (SakSTAR) with human platelets were investigated in a buffer milieu, in a human plasma milieu in vitro, and in plasma from patients with acute myocardial infarction (AMI) treated with SakSTAR.In a buffer milieu, the activation rate of plasminogen by SakSTAR or streptokinase (SK) was not significantly altered by addition of platelets. Specific binding of SakSTAR or SK to either resting or thrombin- activated platelets was very low. ADP-induced or collagen-induced platelet aggregation in platelet-rich plasma (PRP) was 94 ± 2.7% or 101 ± 1.7% of control in the presence of 0.1 to 20 μM SakSTAR, with corresponding values of 95 ± 2.8% or 90 ± 4.6% of control in the presence of 0.1 to 4 μM SK. No effects were observed on platelet disaggregation. ATP secretion following collagen-induced platelet aggregation was 4.3 ± 0.26 μM for SakSTAR (at concentrations of 0.1 to 20 μM) and 4.4 ± 0.35 μM for SK (at concentrations of 0.1 to 4 μM), as compared to 3.4 ± 0.70 μM in the absence of plasminogen activator.Fifty % lysis in 2 h (C50) of 60 μl 125I-fibrin labeled platelet-poor plasma (PPP) clots prepared from normal plasma or from plasma of patients with Glanzmann thrombasthenia and immersed in 0.5 ml normal plasma, was obtained with 12 or 16 nM SakSTAR and with 49 or 40 nM SK, respectively. C50 values for lysis of 60 μl PRP clots prepared from normal or patient plasma were also comparable for SakSTAR (19 or 21 nM), whereas SK was 2-fold more potent toward PRP clots prepared from Glanzmann plasma as compared to normal plasma (C50 of 130 versus 270 nM).No significant effect of SakSTAR on platelet function was observed in plasma from patients with AMI treated with SakSTAR, as revealed by unaltered platelet count, platelet aggregation and ATP secretion.Thus, no effects of high SakSTAR concentrations were observed on human platelets in vitro, nor of therapeutic SakSTAR concentrations on platelet function in plasma.


1983 ◽  
Vol 50 (04) ◽  
pp. 852-856 ◽  
Author(s):  
P Gresele ◽  
C Zoja ◽  
H Deckmyn ◽  
J Arnout ◽  
J Vermylen ◽  
...  

SummaryDipyridamole possesses antithrombotic properties in the animal and in man but it does not inhibit platelet aggregation in plasma. We evaluated the effect of dipyridamole ex vivo and in vitro on platelet aggregation induced by collagen and adenosine- 5’-diphosphate (ADP) in human whole blood with an impedance aggregometer. Two hundred mg dipyridamole induced a significant inhibition of both ADP- and collagen-induced aggregation in human blood samples taken 2 hr after oral drug intake. Administration of the drug for four days, 400 mg/day, further increased the antiplatelet effect. A significant negative correlation was found between collagen-induced platelet aggregation in whole blood and dipyridamole levels in plasma (p <0.001). A statistically significant inhibition of both collagen (p <0.0025) and ADP-induced (p <0.005) platelet aggregation was also obtained by incubating whole blood in vitro for 2 min at 37° C with dipyridamole (3.9 μM). No such effects were seen in platelet-rich plasma, even after enrichment with leukocytes. Low-dose adenosine enhanced in vitro inhibition in whole blood.Our results demonstrate that dipyridamole impedes platelet aggregation in whole blood by an interaction with red blood cells, probably involving adenosine.


1979 ◽  
Author(s):  
K.E. Sarji ◽  
J. Gonzalez ◽  
H. Hempling ◽  
J.A. Colwell

To determine whether Vitamin C might relate to the increased platelet sensitivity in the diabetic, we have measured levels of platelet Vitamin C and studied the effects of Vitamin C on platelet aggregation. Ascorbic acid levels in washed platelets from diabetics were significantly lower than from normals (4s.2±3 μg/1010 platelets vs. 2s.s±2 μg/1010 platelets, p<.001). The effects of ascorbic acid on platelet aggregation in vitro were studied by adding ascorbic acid in buffered solution (pH 7.35) prior to-aggregating agents. Ascorbic acid in platelet-rich plasma consistently inhibited platelet aggregation with threshold concentrations of ADP, epinephrine, and collagen. With washed platelets, ascorbic acid inhibited arachidonic, acid-induced aggregation. When platelets were incubated at 37°C for 10 minutes with varying concentrations of ascorbic acid, rewashed, and aggregation with arachidonic acid tested, aggregation was inhibited in a linear dose-dependent fashion. Oral ingestion of ascorbic acid (2 gm/day) for seven days by normal non-smoking males produced a marked inhibition of aggregation. In a similar study, platelets from an insulin-dependent diabetic showed no change in aggregation. These results suggest that platelet levels of ascorbic acid may relate to the hyperaggregat ion of platelets from diabetics.


Sign in / Sign up

Export Citation Format

Share Document