Hemoglobin level is linked to growth hormone-dependent proteins in short children

Blood ◽  
1996 ◽  
Vol 87 (5) ◽  
pp. 2075-2081 ◽  
Author(s):  
E Vihervuori ◽  
M Virtanen ◽  
H Koistinen ◽  
R Koistinen ◽  
M Seppala ◽  
...  

Erythropoiesis was investigated in 32 children wih short stature and in eight children with skeletal dysplasia by studying blood hemoglobin in relation to growth and to serum concentrations of insulin-like growth factor I (IGF-I), IGF binding protein-3 (IGFBP-3), and erythropoietin (EPO) before, during, and after 12 months of recombinant human growth hormone (GH) treatment. Blood hemoglobin concentration was positively correlated with relative body height and with serum IGF-I and IGFBP-3 levels (P = .001 to .02), but not with the concentrations of EPO. The normal age-dependency of hemoglobin was lacking. Hemoglobin levels and their responses to GH treatment were similar in the patients with GH deficiency and those with normal GH secretion. Treatment with GH accelerated growth and elevated the concentrations of hemoglobin, IGF- I, and IGFBP-3. In the eight patients with skeletal dysplasia, body mass increased similarly, but gain in height was less than in the other patients, and the increase in hemoglobin was markedly pronounced. In this group, the correlations between hemoglobin, IGF-I, and IGFBP-3 were extremely close (r = 0.80 to 0.85, P = .031 to .008). These findings are in accord with earlier observations from in vitro and animal studies, and suggest that the GH-IGF axis is involved in the physiologic elevation of hemoglobin levels during childhood.

Blood ◽  
1996 ◽  
Vol 87 (5) ◽  
pp. 2075-2081 ◽  
Author(s):  
E Vihervuori ◽  
M Virtanen ◽  
H Koistinen ◽  
R Koistinen ◽  
M Seppala ◽  
...  

Abstract Erythropoiesis was investigated in 32 children wih short stature and in eight children with skeletal dysplasia by studying blood hemoglobin in relation to growth and to serum concentrations of insulin-like growth factor I (IGF-I), IGF binding protein-3 (IGFBP-3), and erythropoietin (EPO) before, during, and after 12 months of recombinant human growth hormone (GH) treatment. Blood hemoglobin concentration was positively correlated with relative body height and with serum IGF-I and IGFBP-3 levels (P = .001 to .02), but not with the concentrations of EPO. The normal age-dependency of hemoglobin was lacking. Hemoglobin levels and their responses to GH treatment were similar in the patients with GH deficiency and those with normal GH secretion. Treatment with GH accelerated growth and elevated the concentrations of hemoglobin, IGF- I, and IGFBP-3. In the eight patients with skeletal dysplasia, body mass increased similarly, but gain in height was less than in the other patients, and the increase in hemoglobin was markedly pronounced. In this group, the correlations between hemoglobin, IGF-I, and IGFBP-3 were extremely close (r = 0.80 to 0.85, P = .031 to .008). These findings are in accord with earlier observations from in vitro and animal studies, and suggest that the GH-IGF axis is involved in the physiologic elevation of hemoglobin levels during childhood.


2001 ◽  
pp. 267-272 ◽  
Author(s):  
G Aimaretti ◽  
G Fanciulli ◽  
S Bellone ◽  
M Maccario ◽  
E Arvat ◽  
...  

OBJECTIVE: Adults with severe GH deficiency (GHD) need recombinant human growth hormone (rhGH) replacement to restore body composition, structure functions and metabolic abnormalities. The optimal rhGH dose for replacement has been progressively reduced to avoid side effects. The aim of the present study was to define the minimal rhGH dose able to increase both IGF-I and IGF binding protein (BP)-3 levels in GHD and to verify the possible change in GH sensitivity. DESIGN AND PATIENTS: To this goal, we studied the effect of 4-day treatment with 3 rhGH doses (1.25, 2.5 and 5.0 microg/kg/day) on IGF-I and IGFBP-3 levels in 25 panhypopituitary adults with severe GHD (12 males and 13 females, age: 44.5+/-3.0 years, body mass index (BMI): 27.0+/-0.9 kg/m(2)) and 21 normal young adult volunteers (NV, 12 males and 9 females, age: 30.5+/-2.0 years, BMI: 20.8+/-0.5 kg/m(2)). RESULTS: Basal IGF-I and IGFBP-3 levels in GHD were lower (P<0.001) than in NV. In NV the 1.25 microg/kg dose of rhGH did not modify IGF-I levels. The dose of 2.5 microg/kg rhGH significantly increased IGF-I levels in men (P<0.001) but not in women, while the 5.0 microg/kg dose increased IGF-I levels in both sexes (P<0.001). IGFBP-3 levels were not modified by any of the administered rhGH doses. In GHD patients, all rhGH doses increased IGF-I levels 12 h after both the first (P<0.01) and the fourth rhGH dose (P<0.001). At the end of treatment percentage increases in IGF-I were higher (P<0.001) in GHD patients than in NV. In contrast with NV, in GHD patients the IGF-I response to short-term stimulation with rhGH was independent of gender. Moreover, GHD patients showed increases in IGFBP-3 after the fourth administration of both 2.5 and 5.0 microg/kg rhGH. CONCLUSION: The results of the present study demonstrate that the minimal rhGH dose able to increase IGF-I and IGFBP-3 levels in GHD patients is lower than in normal subjects, at least after a very short treatment. This evidence suggests an enhanced peripheral GH sensitivity in GH deprivation.


1989 ◽  
Vol 120 (4) ◽  
pp. 526-532 ◽  
Author(s):  
Gila Maor ◽  
Zeev Hochberg ◽  
Michael Silbermann

Abstract. This study used an organ culture system of neonatal condylar cartilage to study the in vitro effects of recombinant human growth hormone on the growth of cartilage and its inherent cell populations: progenitor cells, chondroblasts and early hypertrophic chondrocytes. Growth hormone at a dose of 2.5 nmol/l enhanced the overall growth of cartilage explant and stimulated the differentiation of its cells. Hence, growth hormonetreated explants revealed a substantial increase in the number of chondroblasts and young hypertrophic chondrocytes. Along with its effects upon cartilage the hormone also stimulated new bone formation adjacent to mineralized hypertrophic chondrocytes. These results provide support to the notion that growth hormone stimulates cartilage growth which in turn is followed by endochondral ossification. In spite of its in vitro effect it is not as yet clear whether the effect of growth hormone is indeed a direct one or is mediated via the local production of IGF-I.


1995 ◽  
Vol 132 (4) ◽  
pp. 433-437 ◽  
Author(s):  
Burkhard Tönshoff ◽  
Werner F Blum ◽  
Mark Vickers ◽  
Sabine Kurilenko ◽  
Otto Mehls ◽  
...  

Tönshoff B, Blum WF, Vickers M, Kurilenko S, Mehls 0, Ritz E. Quantification of urinary insulin-like growth factors (IGFs) and IGF binding protein 3 in healthy volunteers before and after stimulation with recombinant human growth hormone. Eur J Endocrinol 1995;132:433–7. ISSN 0804–4643 We examined excretion of urinary insulin-like growth factors I and II (IGF-I and IGF-II) and their major binding protein IGFBP-3 in comparison to their respective serum concentration in nine healthy female volunteers (median age 25 years, range 22–27) under baseline conditions and after stimulation with recombinant human growth hormone (rhGH), 4.5 IU twice daily subcutaneously for a period of 3 days. The IGFs were measured in unconcentrated urine by use of recently developed, highly sensitive radioimmunoassays. The IGFBP-3 was measured by a specific radioimmunoassay. The mean (±sd) urinary concentrations of IGF-I (0.08 ± 0.07 μg/l), IGF-II (1.02 ± 0.47 μg/l) and IGFBP-3 (19.1 ± 6.9 μg/l) were two to three orders of magnitude lower than in serum. The ratio of IGF-II over IGF-I concentration in urine (13:1) was five times higher than in serum (2.5:1), and the ratio of IGFBP-3 over the sum of IGF-I and IGF-II in urine (17:1) was four times higher than in serum (4:1). Urinary excretion was 63.3 ± 46.6 ng·m−2 · 24 h−1 for IGF-I, 1002 ± 598 ng·m−2 · 24 h−1 for IGFII and 18039 ± 4983 ng·m−2·24 h−1 for IGFBP-3. Using fast protein liquid exclusion chromatography, only immunoreactive IGFBP-3 components of less than 60 kD were detected in urine, with a major peak at 20kD. Urinary IGFBP-3 excretion correlated with serum IGFBP-3 (r = 0.61, p < 0.01) and the glomerular filtration rate (r = 0.56, p < 0.05) measured by steady-state inulin infusion clearances. Administration of rhGH stimulated significantly (p < 0.005) the serum IGF-I concentration by 50%, but not the urinary IGF-I excretion. In conclusion: the considerably higher ratio of IGF-II to IGF-I in urine compared to serum indicates that urinary IGF excretion does not represent only filtered IGFs, urinary IGF-I is a less sensitive indicator of GH activity than serum IGF-I, and as urinary IGFBP-3 excretion is in proportion to the glomerular filtration rate and serum IGFBP-3, it presumably reflects renal filtration of small immunoreactive IGFBP-3 fragments from the circulation. Burkhard Tönshoff, University Children's Hospital, Im Neuenheimer Feld 150, 69120 Heidelberg, Germany


Blood ◽  
1992 ◽  
Vol 79 (2) ◽  
pp. 467-472
Author(s):  
J Laurence ◽  
B Grimison ◽  
A Gonenne

Growth hormone (somatotropin) is a potent anabolic protein currently being evaluated clinically in cachexia associated with malignancy and human immunodeficiency virus (HIV) disease. Growth hormone can also lead to enhancement of lectin-mediated cellular proliferation, macrophage activation, and cytokine induction, events linked to induction of latent HIV in vitro. We thus explored the ability of recombinant human growth hormone (rhGH) to affect viral replication in acute and chronic HIV infection, and to alter transcription at the HIV- 1 long terminal repeat (LTR). A clone of promonocytic cells, chronically infected with HIV-1 and susceptible to viral induction by a variety of cytokines and protein kinase C activators, was unperturbed by rhGH used over broad concentrations (10 to 500 ng/mL) and time intervals. This unresponsiveness paralleled the lack of effect of rhGH on HIV-associated trans-activation in both monocytic and CD4+ T-cell lines. In contrast, rhGH enhanced viral replication in acutely infected peripheral blood mononuclear cells (PBMC) by twofold to 20-fold, albeit having no adverse effect on the antiviral efficacy of zidovudine (AZT). Augmentation of HIV growth correlated with stimulation of cellular DNA synthetic responses and an increase in tumor necrosis factor-alpha (TNF- alpha) secretion. These data are discussed in the context of ongoing clinical trials of rhGH in HIV-seropositive individuals with wasting syndromes.


1999 ◽  
Vol 160 (1) ◽  
pp. 127-135 ◽  
Author(s):  
◽  
JL Laustsen ◽  
BS Hansen ◽  
EA Richter

The isolated effect of growth hormone on carbohydrate metabolism in rat skeletal muscle was studied in growth hormone-deficient dwarf rats (dw/dw) treated with either recombinant human growth hormone or saline for 10 days. In addition, age-matched heterozygous (DW/dw) (normal weight and plasma IGF-I) control rats were treated with saline. Growth hormone increased weight gain from 0.1+/-0.1 (s.e.m) to 3.6+/-0.1 g/day and plasma IGF-I concentration from 364+/-23 to 451+/-32 ng/ml. Glucose metabolism in skeletal muscle perfused with basal, submaximal and maximal concentrations (0, 600 and 60 000 pmol/l respectively) of insulin was not changed by growth hormone. No change could be detected in the total number of glucose transporters (GLUT1 and GLUT4) in the skeletal muscles, except from a lower amount of GLUT4 in the soleus muscle in the heterozygous control group. However, at submaximal insulin concentrations, skeletal muscle glucose uptake and transport were significantly lower in the heterozygous control group compared with the growth hormone-deficient group. This could indicate either a direct long-term effect of growth hormone or more likely a secondary effect attributable to the difference in body weight (205.2+/-3.1 vs 361. 6+/-5.9 g for dwarf rats and heterozygous controls respectively), and thereby muscle fibre size, between the groups probably resulting in lower average interstitial insulin and glucose concentrations at a given plasma concentration in the heterozygous rats. It is concluded that restoration of subnormal growth hormone concentrations for 10 days has no effect on insulin-stimulated glucose metabolism in skeletal muscle in vitro.


2018 ◽  
Vol 89 (2) ◽  
pp. 98-107 ◽  
Author(s):  
Laura van Iersel ◽  
Hanneke M. van Santen ◽  
Gladys R.J. Zandwijken ◽  
Nitash Zwaveling-Soonawala ◽  
Anita C.S. Hokken-Koelega ◽  
...  

Background: Growth hormone (GH) treatment may unmask central hypothyroidism (CeH). This was first observed in children with GH deficiency (GHD), later also in adults with GHD due to acquired “organic” pituitary disease. We hypothesized that newly diagnosed CeH in children after starting GH treatment for nonacquired, apparent isolated GHD points to congenital “organic” pituitary disease. Methods: Nationwide, retrospective cohort study including all children with nonacquired GHD between 2001 and 2011 in The Netherlands. The prevalence of CeH, hypothalamic-pituitary (HP) abnormalities, and neonatal congenital hypothyroidism screening results were evaluated. Results: Twenty-three (6.3%) of 367 children with apparent isolated GHD were prescribed LT4 for presumed CeH within 2 years after starting GH treatment. Similarly to children already diagnosed with multiple pituitary hormone deficiency, 75% of these 23 had structural HP abnormalities. In children not prescribed LT4, low pre- or post-GH treatment FT4 concentrations were also associated with structural HP abnormalities. Neonatal screening results of only 4 of the 23 children could be retrieved. Conclusion: In children with nonacquired, apparent isolated GHD, a diagnosis of CeH after, or a low FT4 concentration around the start of GH treatment, is associated with congenital structural HP abnormalities, i.e., “organic” pituitary disease. Neonatal values could not be judged reliably.


Blood ◽  
1992 ◽  
Vol 79 (2) ◽  
pp. 467-472 ◽  
Author(s):  
J Laurence ◽  
B Grimison ◽  
A Gonenne

Abstract Growth hormone (somatotropin) is a potent anabolic protein currently being evaluated clinically in cachexia associated with malignancy and human immunodeficiency virus (HIV) disease. Growth hormone can also lead to enhancement of lectin-mediated cellular proliferation, macrophage activation, and cytokine induction, events linked to induction of latent HIV in vitro. We thus explored the ability of recombinant human growth hormone (rhGH) to affect viral replication in acute and chronic HIV infection, and to alter transcription at the HIV- 1 long terminal repeat (LTR). A clone of promonocytic cells, chronically infected with HIV-1 and susceptible to viral induction by a variety of cytokines and protein kinase C activators, was unperturbed by rhGH used over broad concentrations (10 to 500 ng/mL) and time intervals. This unresponsiveness paralleled the lack of effect of rhGH on HIV-associated trans-activation in both monocytic and CD4+ T-cell lines. In contrast, rhGH enhanced viral replication in acutely infected peripheral blood mononuclear cells (PBMC) by twofold to 20-fold, albeit having no adverse effect on the antiviral efficacy of zidovudine (AZT). Augmentation of HIV growth correlated with stimulation of cellular DNA synthetic responses and an increase in tumor necrosis factor-alpha (TNF- alpha) secretion. These data are discussed in the context of ongoing clinical trials of rhGH in HIV-seropositive individuals with wasting syndromes.


1994 ◽  
Vol 267 (2) ◽  
pp. E226-E233 ◽  
Author(s):  
C. Schmid ◽  
I. Schlapfer ◽  
M. Peter ◽  
M. Boni-Schnetzler ◽  
J. Schwander ◽  
...  

Osteoblast-like cells prepared from calvaria of newborn rats produce insulin-like growth factor (IGF) I and several insulin-like growth factor binding proteins (IGFBPs) in vitro. Among the IGFBPs found in conditioned cell culture medium, IGFBP-3 is the most abundant. Intact IGFBP-3, as assessed by 125I-labeled IGF-II ligand blot analysis, is more abundant in culture media of cells exposed to growth hormone (GH) or to parathyroid hormone (PTH), both at 5 x 10(-9) mol/l, for 24 h. At the same time, concentrations of IGF-I are increased in media of cells exposed to PTH but not to GH, compared with hormone-free control cultures. IGFBP-3 mRNA is increased in osteoblasts exposed to PTH or to GH but not in response to 5 x 10(-9) mol/l IGF-I. PTH exerts a rapid (within 2 h) stimulatory effect on IGF-I and IGFBP-3 production, both at the message and peptide levels, whereas GH increases only IGFBP-3, both at the message and peptide levels (after 24 h). We conclude that IGF-I does not mediate increased IGFBP-3 production by rat osteoblasts in response to GH and PTH.


Sign in / Sign up

Export Citation Format

Share Document