scholarly journals Macrophage colony-stimulating factor induces substantial osteoclast generation and bone resorption in human bone marrow cultures

Blood ◽  
1996 ◽  
Vol 88 (7) ◽  
pp. 2531-2540 ◽  
Author(s):  
U Sarma ◽  
AM Flanagan

Macrophage colony-stimulating factor (M-CSF) is essential for murine osteoclast formation and its role in human hematopoiesis in vitro is not fully defined. Therefore, we have investigated the effect of M-CSF on the formation of human osteoclasts in vitro. M-CSF was found to induce substantial bone resorption and osteoclast formation in a dose-responsive and time-dependent manner above that induced by 1,25 dihydroxyvitamin D3 (1,25 vitamin D3) in cultures of human bone marrow (BM) stromal cells sedimented onto devitalized bone. By day 14 there was a mean of approximately 50% of the surfaces of the bone slices resorbed compared with only 6% in cultures treated with 1,25 vitamin D3 alone. Osteoclasts were identified as 23c6+ cells (an antibody that recognizes the vitronectin receptor), 87.5% of which coexpressed the calcitonin receptor. The number of 23c6+ cells correlated strongly with bone resorption spatially, and in a dose-responsive and time-dependent manner; the correlation coefficient in cultures treated with 1,25 vitamin D3 alone was 0.856 and those treated with both M-CSF and 1,25 vitamin D3 was 0.880. Granulocyte-macrophage colony-stimulating factor, IL-1 beta, IL-3, IL-6, tumor necrosis factor-alpha, transforming growth factor-beta, leukemia inhibitory factor, and IL-11 did not increase bone resorption above that in 1,25 vitamin D3-treated cultures. We also found that 1,25 vitamin D3 increased, to a minor but significant degree, both bone resorption and the concentration of M-CSF in the culture supernatants above that in vehicle-treated cultures, indicating that M-CSF is present in our BM cultures, but that there is insufficient to induce substantial osteoclast formation. These results define a critical role for M-CSF in the formation of human osteoclasts.

Blood ◽  
1992 ◽  
Vol 79 (12) ◽  
pp. 3227-3232 ◽  
Author(s):  
K Taguchi ◽  
A Shibuya ◽  
Y Inazawa ◽  
T Abe

Abstract We investigated the effects of recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) and recombinant human granulocyte- CSF (rhG-CSF) on the generation of natural killer (NK) cells in vitro. NK cells were cultured from selected human bone marrow cells obtained after the elimination of mature T and NK cells. rhGM-CSF significantly suppressed the generation of CD56+ cells and NK activity (P less than .01) in a dose-dependent manner. The generation of large granular lymphocytes (LGL) was also suppressed in the presence of rhGM-CSF (P less than .01). In contrast, rhG-CSF had no effect on LGL (P greater than .05). Both rhGM-CSF and rhG-CSF had no influence on the CD56+ cell count in the peripheral blood. These results suggest that rhGM-CSF suppresses the in vitro generation of NK cells.


Endocrinology ◽  
2011 ◽  
Vol 152 (5) ◽  
pp. 1911-1922 ◽  
Author(s):  
Hasnawati Saleh ◽  
Damien Eeles ◽  
Jason M. Hodge ◽  
Geoffrey C. Nicholson ◽  
Ran Gu ◽  
...  

IL-33 is an important inflammatory mediator in allergy, asthma, and joint inflammation, acting via its receptor, ST2L, to elicit Th2 cell cytokine secretion. IL-33 is related to IL-1 and IL-18, which both influence bone metabolism, IL-18 in particular inhibiting osteoclast formation and contributing to PTH bone anabolic actions. We found IL-33 immunostaining in osteoblasts in mouse bone and IL-33 mRNA expression in cultured calvarial osteoblasts, which was elevated by treatment with the bone anabolic factors oncostatin M and PTH. IL-33 treatment strongly inhibited osteoclast formation in bone marrow and spleen cell cultures but had no effect on osteoclast formation in receptor activator of nuclear factor-κB ligand/macrophage colony-stimulating factor-treated bone marrow macrophage (BMM) or RAW264.7 cultures, suggesting a lack of direct action on immature osteoclast progenitors. However, osteoclast formation from BMM was inhibited by IL-33 in the presence of osteoblasts, T cells, or mature macrophages, suggesting these cell types may mediate some actions of IL-33. In bone marrow cultures, IL-33 induced mRNA expression of granulocyte macrophage colony-stimulating factor, IL-4, IL-13, and IL-10; osteoclast inhibitory actions of IL-33 were rescued only by combined antibody ablation of these factors. In contrast to osteoclasts, IL-33 promoted matrix mineral deposition by long-term ascorbate treated primary osteoblasts and reduced sclerostin mRNA levels in such cultures after 6 and 24 h of treatment; sclerostin mRNA was also suppressed in IL-33-treated calvarial organ cultures. In summary, IL-33 stimulates osteoblastic function in vitro but inhibits osteoclast formation through at least three separate mechanisms. Autocrine and paracrine actions of osteoblast IL-33 may thus influence bone metabolism.


Endocrinology ◽  
1992 ◽  
Vol 130 (1) ◽  
pp. 437-442 ◽  
Author(s):  
V A Corboz ◽  
M G Cecchini ◽  
R Felix ◽  
H Fleisch ◽  
G van der Pluijm ◽  
...  

1993 ◽  
Vol 178 (5) ◽  
pp. 1733-1744 ◽  
Author(s):  
K Fuller ◽  
J M Owens ◽  
C J Jagger ◽  
A Wilson ◽  
R Moss ◽  
...  

Macrophage colony-stimulating factor (M-CSF) is known to play an important role in osteoclast formation. However, its actions on mature cells have not been fully characterized. We now report that M-CSF dramatically stimulates osteoclastic motility and spreading; osteoclasts responded to a gradient of M-CSF with orientation, and random cell polarization occurred after isotropic exposure. M-CSF also supported the survival of osteoclasts by preventing apoptosis. Paradoxically, M-CSF inhibits bone resorption by isolated osteoclasts. We found that this was effected predominantly by reduction in the number of excavations. Thus, M-CSF showed a propensity to suppress resorption through a reduction in the proportion of cells that were resorbing bone. Our data suggest that apart from the established role of M-CSF in the provision of precursors for osteoclastic induction, a major role for M-CSF in bone resorption is to enhance osteoclastic survival, migration, and chemotaxis. It seems appropriate that during these processes resorptive functions should be suppressed. We suggest that M-CSF continues to modulate osteoclastic activity once osteoclasts are on resorptive sites, through regulation of the balance between resorption and migration, such that not only the quantity, but the spatial pattern of resorption can be controlled by adjacent M-CSF-secreting cells of osteoblastic lineage.


1996 ◽  
Vol 24 (01) ◽  
pp. 45-52 ◽  
Author(s):  
Jerming Tseng ◽  
Tsui-Li Li

Si-Jun-Zi-Tang is one of the widely used Chinese herbal medicines. In this study, human peripheral blood monocytes were treated in vitro with 50% hot ethanol extract of Si-Jun-Zi-Tang and its four major ingredients (Dangshen, Baizhu, Gancao and Fuling). The concentration of granulocyte-macrophage colony-stimulating factor (GM-CSP) in the culture supernatant at 3 hours and 18 hours were measured using an ELISA. Dangshen and Gancao significantly suppressed GM-CSP secretion in a dose-dependent manner. Baizhu showed no statistically significant effect on GM-CSP secretion 18 hours after in vitro drug-treatment. Fuling, by contrast, significantly augmented GM-CSP secretion in a dose dependent manner after 18 hours of drug treatment. Si-Jun-Zi-Tang showed a suppressive effect on GM-CSP secretion at 3 hours but significantly augmented GM-CSP secretion when the cells were treated with 8 mg/ml of the drug for 18 hours. The data suggested that Si-Jun-Zi-Tang might modulate hematopoiesis and immune response via regulating GM-CSP secretion, and the presence of Fuling in Si-Jun-Zi-Tang could counteract the suppressive effect of Dangshen and Gancao on GM-CSP secretion.


2011 ◽  
Vol 300 (3) ◽  
pp. L354-L361 ◽  
Author(s):  
Cláudia A. Fernandes ◽  
Laurence Fievez ◽  
Bernard Ucakar ◽  
Audrey M. Neyrinck ◽  
Catherine Fillee ◽  
...  

Neutrophils constitute the first line of host defense against invading microorganisms. Yet their removal from the inflammatory environment is fundamental for injury restraint and resolution of inflammation. Nicotinamide, a component of vitamin B3, is known to modulate cell survival. In this study, we assessed the influence of nicotinamide on neutrophil apoptosis, both in vitro and in vivo in a mouse model of endotoxin-induced lung inflammation. In vitro, nicotinamide promoted apoptosis of human blood neutrophils in a dose-dependent manner in the presence of the apoptosis inhibitors granulocyte colony-stimulating factor and granulocyte/macrophage colony-stimulating factor. The highest concentration of nicotinamide completely neutralized the pro-survival effect of granulocyte (macrophage) colony-stimulating factor. Nicotinamide proapoptotic effect was associated with enhanced caspase-3 activity. In addition, nicotinamide slightly reduced neutrophil chemotaxis in vitro. In vivo, pulmonary nicotinamide delivery decreased the levels of cellular and biochemical inflammation markers and increased the percentage of apoptotic neutrophils in bronchoalveolar lavages. Our findings suggest that nicotinamide is an apoptotic stimulus for neutrophils, thereby contributing to the resolution of neutrophilic inflammation in the lungs.


Sign in / Sign up

Export Citation Format

Share Document