6. Macrophage colony stimulating factor (M-CSF) is essential for osteoclast formation in vitro

Bone ◽  
1992 ◽  
Vol 13 (3) ◽  
pp. 274
Author(s):  
G. Hattersley ◽  
J. Owens ◽  
T.J. Chambers
Endocrinology ◽  
2011 ◽  
Vol 152 (5) ◽  
pp. 1911-1922 ◽  
Author(s):  
Hasnawati Saleh ◽  
Damien Eeles ◽  
Jason M. Hodge ◽  
Geoffrey C. Nicholson ◽  
Ran Gu ◽  
...  

IL-33 is an important inflammatory mediator in allergy, asthma, and joint inflammation, acting via its receptor, ST2L, to elicit Th2 cell cytokine secretion. IL-33 is related to IL-1 and IL-18, which both influence bone metabolism, IL-18 in particular inhibiting osteoclast formation and contributing to PTH bone anabolic actions. We found IL-33 immunostaining in osteoblasts in mouse bone and IL-33 mRNA expression in cultured calvarial osteoblasts, which was elevated by treatment with the bone anabolic factors oncostatin M and PTH. IL-33 treatment strongly inhibited osteoclast formation in bone marrow and spleen cell cultures but had no effect on osteoclast formation in receptor activator of nuclear factor-κB ligand/macrophage colony-stimulating factor-treated bone marrow macrophage (BMM) or RAW264.7 cultures, suggesting a lack of direct action on immature osteoclast progenitors. However, osteoclast formation from BMM was inhibited by IL-33 in the presence of osteoblasts, T cells, or mature macrophages, suggesting these cell types may mediate some actions of IL-33. In bone marrow cultures, IL-33 induced mRNA expression of granulocyte macrophage colony-stimulating factor, IL-4, IL-13, and IL-10; osteoclast inhibitory actions of IL-33 were rescued only by combined antibody ablation of these factors. In contrast to osteoclasts, IL-33 promoted matrix mineral deposition by long-term ascorbate treated primary osteoblasts and reduced sclerostin mRNA levels in such cultures after 6 and 24 h of treatment; sclerostin mRNA was also suppressed in IL-33-treated calvarial organ cultures. In summary, IL-33 stimulates osteoblastic function in vitro but inhibits osteoclast formation through at least three separate mechanisms. Autocrine and paracrine actions of osteoblast IL-33 may thus influence bone metabolism.


Blood ◽  
1996 ◽  
Vol 88 (7) ◽  
pp. 2531-2540 ◽  
Author(s):  
U Sarma ◽  
AM Flanagan

Macrophage colony-stimulating factor (M-CSF) is essential for murine osteoclast formation and its role in human hematopoiesis in vitro is not fully defined. Therefore, we have investigated the effect of M-CSF on the formation of human osteoclasts in vitro. M-CSF was found to induce substantial bone resorption and osteoclast formation in a dose-responsive and time-dependent manner above that induced by 1,25 dihydroxyvitamin D3 (1,25 vitamin D3) in cultures of human bone marrow (BM) stromal cells sedimented onto devitalized bone. By day 14 there was a mean of approximately 50% of the surfaces of the bone slices resorbed compared with only 6% in cultures treated with 1,25 vitamin D3 alone. Osteoclasts were identified as 23c6+ cells (an antibody that recognizes the vitronectin receptor), 87.5% of which coexpressed the calcitonin receptor. The number of 23c6+ cells correlated strongly with bone resorption spatially, and in a dose-responsive and time-dependent manner; the correlation coefficient in cultures treated with 1,25 vitamin D3 alone was 0.856 and those treated with both M-CSF and 1,25 vitamin D3 was 0.880. Granulocyte-macrophage colony-stimulating factor, IL-1 beta, IL-3, IL-6, tumor necrosis factor-alpha, transforming growth factor-beta, leukemia inhibitory factor, and IL-11 did not increase bone resorption above that in 1,25 vitamin D3-treated cultures. We also found that 1,25 vitamin D3 increased, to a minor but significant degree, both bone resorption and the concentration of M-CSF in the culture supernatants above that in vehicle-treated cultures, indicating that M-CSF is present in our BM cultures, but that there is insufficient to induce substantial osteoclast formation. These results define a critical role for M-CSF in the formation of human osteoclasts.


2000 ◽  
Vol 204 (2) ◽  
pp. 114-127 ◽  
Author(s):  
Roberto P. Revoltella ◽  
Leopoldo Laricchia Robbio ◽  
Anna Marina Liberati ◽  
Gigliola Reato ◽  
Robin Foa ◽  
...  

Blood ◽  
1988 ◽  
Vol 72 (4) ◽  
pp. 1329-1332 ◽  
Author(s):  
DC Kaufman ◽  
MR Baer ◽  
XZ Gao ◽  
ZQ Wang ◽  
HD Preisler

Expression of the granulocyte-macrophage colony-stimulating factor (GM- CSF) gene in acute myelocytic leukemia (AML) was assayed by Northern blot analysis. GM-CSF messenger RNA (mRNA) was detected in the freshly obtained mononuclear cells of only one of 48 cases of AML, in contrast with recent reports that GM-CSF mRNA might be detected in half of the cases of AML when RNA is prepared from T-cell- and monocyte-depleted leukemic cells. We did find, however, that expression of the GM-CSF gene was detectable in five of ten cases after in vitro T-cell and monocyte depletion steps. Additional studies suggest that expression of GM-CSF in the bone marrow of the one positive case, rather than being autonomous, was under exogenous control, possibly by a paracrine factor secreted by marrow stromal cells. These studies emphasize the potential for altering in vivo patterns of gene expression by in vitro cell manipulation.


Sign in / Sign up

Export Citation Format

Share Document