scholarly journals Characterization of an inducible endothelial cell prothrombin activator

Blood ◽  
1996 ◽  
Vol 88 (8) ◽  
pp. 2989-2994 ◽  
Author(s):  
L Liu ◽  
GM Rodgers

In vivo prothrombin activation is thought to occur via a factor Xa/factor V-dependent mechanism. We investigated whether human venous endothelial cells (EC) could be induced to express a prothrombin activator. EC treated with lipopolysaccharide (LPS) or interleukin-1 activated prothrombin in the absence of exogenous factors Xa and V. This activity resided in the membrane fraction of EC and was not inhibited by an antibody to factor V. The apparent Km value was 3.3 +/- 0.3 mumol/L. Comparative studies of thrombin generation using a model system of phospholipid and factors Xa/V versus LPS-treated EC were performed to quantitate the effects of known inhibitors to factor Xa. The factor Xa inhibitor DEGR-chloromethyl ketone and an antibody to factor X inhibited prothrombin activation. However, the EC activator did not hydrolyze a factor Xa chromogenic substrate, and recombinant tick anticoagulant peptide did not suppress activity of the prothrombin activator. The apparent molecular weight of the EC activator was approximately 30 kD. Exogenous factor V enhanced the activity of the EC activator, such that in the presence of factor V, the apparent K(m) value was 1.28 +/- 0.10 mumol/L. Additionally, LPS-treated EC activated exogenous factor V. This activator has several characteristics of a previously described inducible murine monocyte prothrombin activator and may contribute to thrombin generation associated with pathologic stimuli.

Blood ◽  
1982 ◽  
Vol 59 (5) ◽  
pp. 1086-1097 ◽  
Author(s):  
JM Teitel ◽  
KA Bauer ◽  
HK Lau ◽  
RD Rosenberg

Abstract We have evaluated the efficacy of utilizing radioimmunoassays (RIAs) for prothrombin activation fragments (F2/F1 + 2) and for thrombin-- antithrombin complex (TAT) in purified systems and in whole blood. During venipuncture, appropriate anticoagulants were employed in order to prevent the generation of thrombin and factor Xa. The RIAs were shown to be specific for F2/F1 + 2 as well as TAT and did not interact with other plasma components. Initially, thrombin generation was studied in a purified human system of prothrombin, antithrombin, factor Xa, and factor V as well as phospholipid and Ca++. Under these conditions, the kinetics of F2/F1 + 2 and TAT generation were virtually superimposable. However, when factor V was omitted from the reaction mixture, a significantly greater amount of F2/F1 + 2 as compared to TAT was observable. Subsequently, prothrombin activation was monitored during the spontaneous coagulation of freshly drawn blood. Throughout the entire course of thrombin generation, the observable rate of formation of F2/F1 + 2 was considerably greater than that of TAT. We have examined the levels of F2/F1 + 2 and TAT in normal individuals. Our studies indicate that the concentrations of F1 + 2 and TAT average 1.97 nM and 2.32 nM, respectively. We have also quantitated the concentrations of F2/F1 + 2 and TAT in patients with disseminated intravascular coagulation. In these individuals, the levels of both components are elevated. However, the ratio of F1 + 2 to TAT ranges from 2.37 to 5.55. Thus, we conclude that under in vivo conditions, prothrombin activation is characterized by the accumulation of a stable precursor, such as prethrombin-2, and that this phenomenon may be related to an alteration of factor V function.


Author(s):  
J. Rosing ◽  
G. Tans ◽  
J.W.P. Govers-Riemslag ◽  
R.F.A. Zwaal ◽  
H.C. Hemker

The kinetic parameters of the conversion of prothrombin into thrombin by activated clotting factor X (factor Xa) have been determined in the absence and presence of Ca2+, phospholipid (phosphatidyl serine/phosphatidylcholine vesicles) and activated blood clotting factor V (factor Va). In free solution the Km for prothrombin is 298 μM which is well above its plasma concentration of 4μM. Under these conditions the Vmax of thrombin formation is 1.25 Moles min-1 Mole Xa -1. When phospholipid is present the km for prothrombin drops to 0.1μM while the Vmax is only slightly affected (3 Moles min-1 Mo Le Xa -1). For the complete prothrombin activating complex consisting of factor Xa, factor Va, Ca2+ and phospholipids the kinetic constants greatly favour thrombin formation. A for prothrombin of 0.26μM and a Vmax of 2130 Moles min-1 Mole xa -1 are measured under these conditions. These results help to elucidate the role of phospholipid and factor Va in prothrombin activation. The earlier observed rate enhancements caused by phospholipid and factor Va are explained as effects on the Km for prothrombin and the Vmax of thrombin formation, respectively. The changes of the kinetic parameters for prothrombinase complexes of various composition will be considered with respect to the function of the accessory components in the mechanism of prothrombin activation. Implications of these data for in vivo blood coagulation will be discussed.


Blood ◽  
1982 ◽  
Vol 59 (5) ◽  
pp. 1086-1097 ◽  
Author(s):  
JM Teitel ◽  
KA Bauer ◽  
HK Lau ◽  
RD Rosenberg

We have evaluated the efficacy of utilizing radioimmunoassays (RIAs) for prothrombin activation fragments (F2/F1 + 2) and for thrombin-- antithrombin complex (TAT) in purified systems and in whole blood. During venipuncture, appropriate anticoagulants were employed in order to prevent the generation of thrombin and factor Xa. The RIAs were shown to be specific for F2/F1 + 2 as well as TAT and did not interact with other plasma components. Initially, thrombin generation was studied in a purified human system of prothrombin, antithrombin, factor Xa, and factor V as well as phospholipid and Ca++. Under these conditions, the kinetics of F2/F1 + 2 and TAT generation were virtually superimposable. However, when factor V was omitted from the reaction mixture, a significantly greater amount of F2/F1 + 2 as compared to TAT was observable. Subsequently, prothrombin activation was monitored during the spontaneous coagulation of freshly drawn blood. Throughout the entire course of thrombin generation, the observable rate of formation of F2/F1 + 2 was considerably greater than that of TAT. We have examined the levels of F2/F1 + 2 and TAT in normal individuals. Our studies indicate that the concentrations of F1 + 2 and TAT average 1.97 nM and 2.32 nM, respectively. We have also quantitated the concentrations of F2/F1 + 2 and TAT in patients with disseminated intravascular coagulation. In these individuals, the levels of both components are elevated. However, the ratio of F1 + 2 to TAT ranges from 2.37 to 5.55. Thus, we conclude that under in vivo conditions, prothrombin activation is characterized by the accumulation of a stable precursor, such as prethrombin-2, and that this phenomenon may be related to an alteration of factor V function.


1998 ◽  
Vol 79 (05) ◽  
pp. 1041-1047 ◽  
Author(s):  
Kathleen M. Donnelly ◽  
Michael E. Bromberg ◽  
Aaron Milstone ◽  
Jennifer Madison McNiff ◽  
Gordon Terwilliger ◽  
...  

SummaryWe evaluated the in vivo anti-metastatic activity of recombinant Ancylostoma caninum Anticoagulant Peptide (rAcAP), a potent (Ki = 265 pM) and specific active site inhibitor of human coagulation factor Xa originally isolated from bloodfeeding hookworms. Subcutaneous injection of SCID mice with rAcAP (0.01-0.2 mg/mouse) prior to tail vein injection of LOX human melanoma cells resulted in a dose dependent reduction in pulmonary metastases. In order to elucidate potential mechanisms of rAcAP’s anti-metastatic activity, experiments were carried out to identify specific interactions between factor Xa and LOX. Binding of biotinylated factor Xa to LOX monolayers was both specific and saturable (Kd = 15 nM). Competition experiments using antibodies to previously identified factor Xa binding proteins, including factor V/Va, effector cell protease receptor-1, and tissue factor pathway inhibitor failed to implicate any of these molecules as significant binding sites for Factor Xa. Functional prothrombinase activity was also supported by LOX, with a half maximal rate of thrombin generation detected at a factor Xa concentration of 2.4 nM. Additional competition experiments using an excess of either rAcAP or active site blocked factor Xa (EGR-Xa) revealed that most of the total factor Xa binding to LOX is mediated via interaction with the enzyme’s active site, predicting that the vast majority of cell-associated factor Xa does not participate directly in thrombin generation. In addition to establishing two distinct mechanisms of factor Xa binding to melanoma, these data raise the possibility that rAcAP’s antimetastatic effect in vivo might involve novel non-coagulant pathways, perhaps via inhibition of active-site mediated interactions between factor Xa and tumor cells.


1994 ◽  
Vol 72 (06) ◽  
pp. 862-868 ◽  
Author(s):  
Frederick A Ofosu ◽  
J C Lormeau ◽  
Sharon Craven ◽  
Lori Dewar ◽  
Noorildan Anvari

SummaryFactor V activation is a critical step preceding prothrombinase formation. This study determined the contributions of factor Xa and thrombin, which activate purified factor V with similar catalytic efficiency, to plasma factor V activation during coagulation. Prothrombin activation began without a lag phase after a suspension of coagulant phospholipids, CaCl2, and factor Xa was added to factor X-depleted plasma. Hirudin, a potent thrombin inhibitor, abrogated prothrombin activation initiated with 0.5 and 1.0 nM factor Xa, but not with 5 nM factor Xa. In contrast, hirudin did not abrogate prothrombin activation in plasmas pre-incubated with 0.5,1.0 or 5 nM α-thrombin for 10 s followed by the coagulant suspension containing 0.5 nM factor Xa. Thus, thrombin activates plasma factor V more efficiently than factor Xa. At concentrations which doubled the clotting time of contact-activated normal plasma, heparin and three low Mr heparins also abrogated prothrombin activation initiated with 0.5 nM factor Xa, but not with 5 nM factor Xa. If factor V in the factor X-depleted plasma was activated (by pre-incubation with 10 nM a-thrombin for 60 s) before adding 0.5,1.0, or 5 nM factor Xa, neither hirudin nor the heparins altered the rates of prothrombin activation. Thus, none of the five anticoagulants inactivates prothrombinase. When 5 or 10 pM relipidated r-human tissue factor and CaCl2 were added to normal plasma, heparin and the three low Mr heparins delayed the onset of prothrombin activation until the concentration of factor Xa generated exceeded 1 nM, and they subsequently inhibited prothrombin activation to the same extent. Thus, hirudin, heparin and low Mr heparins suppress prothrombin activation solely by inhibiting prothrombinase formation.


1989 ◽  
Vol 257 (1) ◽  
pp. 143-150 ◽  
Author(s):  
F A Ofosu ◽  
J Hirsh ◽  
C T Esmon ◽  
G J Modi ◽  
L M Smith ◽  
...  

We have proposed previously that the steps in coagulation most sensitive to inhibition by heparin are the thrombin-dependent amplification reactions, and that prothrombinase is formed in heparinized plasma only after Factor Xa activates Factor VIII and Factor V. These propositions were based on the demonstration that both heparin and Phe-Pro-Arg-CH2Cl completely inhibited 125I-prothrombin activation for up to 60 s when contact-activated plasma (CAP) was replenished with Ca2+. Furthermore, the addition of thrombin to CAP before heparin or Phe-Pro-Arg-CH2Cl completely reversed their inhibitory effects. Additional support for the above hypotheses is provided in this study by demonstrating that, when the activity of thrombin is suppressed by heparin (indirectly) or by Phe-Pro-Arg-CH2Cl (directly), exogenous Factor Xa reverses the ability of these two agents to inhibit prothrombin activation. Prothrombin activation was initiated by adding Factor Xa (1 nM) or thrombin (1 or 10 nM) simultaneously with CaCl2 to CAP. In the absence of heparin or Phe-Pro-Arg-CH2Cl, prothrombin activation was seen 15 s later in either case. Heparin failed to delay, and Phe-Pro-Arg-CH2Cl delayed for 15 s, prothrombin activation in CAP supplemented with Factor Xa. In contrast, heparin and Phe-Pro-Arg-CH2Cl completely inhibited prothrombin activation for at least 45 s in CAP supplemented with 1 nM-thrombin. Heparin failed to delay prothrombin activation in CAP supplemented with 10 nM-thrombin, whereas Phe-Pro-Arg-CH2Cl completely inhibited prothrombin activation in this plasma for 45 s. These results suggest that in CAP: (1) Factor Xa can effectively activate Factor VIII and Factor V when the proteolytic activity of thrombin is suppressed; (2) heparin-antithrombin III is less able to inhibit Factor Xa than thrombin; (3) suppression of the thrombin-dependent amplification reactions is the primary anticoagulant effect of heparin.


2000 ◽  
Vol 84 (09) ◽  
pp. 396-400 ◽  
Author(s):  
Steve Humphries ◽  
Belinda Smillie ◽  
Lily Li ◽  
Jacqueline Cooper ◽  
Samad Barzegar ◽  
...  

SummaryThe risk of venous thrombosis is increased in individuals who carry specific genetic abnormalities in blood coagulation proteins. Among Caucasians, the prothrombin G20210A and factor V Arg506Gln (FV R506Q) mutations are the most prevalent defects identified to date. We evaluated their influence on markers of coagulation activation among participants in the Second Northwick Park Heart Study, which recruited healthy men (aged 50–61 years) from nine general medical practices in England and Wales. They were free of clinical vascular disease and malignancy at the time of recruitment. Genotypes for the two mutations were analyzed using microplate array diagonal gel electrophoresis, and coagulation markers (factor XIIa; activation peptides of factor IX, factor X, and prothrombin; fibrinopeptide A) were measured by immunoassay. Factor VII coagulant activity and factor VIIa levels were determined by a functional clotting assay. Among 1548 men genotyped for both mutations, 28 (1.8%) and 52 (3.4%) were heterozygous for prothrombin G20210A and FV R506Q, respectively. The only coagulation marker that was significantly associated with the two mutations was prothrombin activation fragment F1+2 [mean ± SD, 0.88 ± 0.32 nmol/L in men with prothrombin G20210A (p = 0.002) and 0.89 ± 0.30 in men with FV R506Q (p = 0.0001) versus 0.72 ± 0.24 among non-carriers for either mutation]. This data provides conclusive evidence that heterozygosity for the prothrombin G20210A as well as the FV R506Q mutations in the general population leads to an increased rate of prothrombin activation in vivo.


1987 ◽  
Author(s):  
F A Ofosu ◽  
G J Modi ◽  
M R Buchanan ◽  
J Hirsh ◽  
M A Blajchman

We have previously proposed that the steps in coagulation most sensitive to inhibition by heparin are the thrombin-dependent activation of factor V and factor VIII. This observation was based on the demonstration that therapeutic concentrations of heparin or 1μM of the thrombin specific inhibitor, phe-pro-arg CH2Cl (PPACK) completely inhibited the activation of prothrombin when contact-activated plasma (CAP) was recalcified for up to 1 min. Under similar conditions, heparin and PPACK only partially inhibited the activation of factor X. Moreover, the addition of thrombin (lOnM) to CAP 1 min before that of heparin or PPACK reversed their inhibitory effects. We now provide further support for our hypothesis by showing that when the activity of thrombin is suppressed by heparin or PPACK, efficient activation of radiolabelled prothrombin occurs only when the factor Xa then present activates factor V and factor VIII. We compared the effects of HEP of PPACK on the following four systems for initiating the activation of prothrombin: (1) CAP; (2) CAP + lOnM thrombin; (3) CAP + InM Xa and (4) unactivated plasma + InM Xa + InM Va + coagulant phospholipids. In each system, the enzymes were added 1 min before the heparin or PPACK. In the absence of heparin or PPACK, all four systems generated the same amount of thrombin activity in 45s. Complete inhibition of prothrombin activation by heparin and PPACK was observed only in system 1 which did not contain exogenous thrombin or factor Xa. No inhibition by heparin or PPACK was observed when thrombin or factor Xa was added to CAP in systems (2) and (3). Only partial inhibition was observed in system (4) which contained exogenous prothrombi-nase complex. Factor Xa thus provides an effective by-pass mechanism for the activation of factor VIII and factor V in plasma containing therapeutic concentrations of heparin. Our data provide further evidence that the heparin-antithrombin III system is not effective in inactivating factor Xa. These results support the hypothesis that in unactivated normal plasma, the primary anticoagulant effect of heparin is the inhibition of the thrombin-dependent activation of factor V and factor VIII.


Blood ◽  
2009 ◽  
Vol 114 (8) ◽  
pp. 1658-1665 ◽  
Author(s):  
Fionnuala Ni Ainle ◽  
Roger J. S. Preston ◽  
P. Vincent Jenkins ◽  
Hendrik J. Nel ◽  
Jennifer A. Johnson ◽  
...  

AbstractProtamine sulfate is a positively charged polypeptide widely used to reverse heparin-induced anticoagulation. Paradoxically, prospective randomized trials have shown that protamine administration for heparin neutralization is associated with increased bleeding, particularly after cardiothoracic surgery with cardiopulmonary bypass. The molecular mechanism(s) through which protamine mediates this anticoagulant effect has not been defined. In vivo administration of pharmacologic doses of protamine to BALB/c mice significantly reduced plasma thrombin generation and prolonged tail-bleeding time (from 120 to 199 seconds). Similarly, in pooled normal human plasma, protamine caused significant dose-dependent prolongations of both prothrombin time and activated partial thromboplastin time. Protamine also markedly attenuated tissue factor-initiated thrombin generation in human plasma, causing a significant decrease in endogenous thrombin potential (41% ± 7%). As expected, low-dose protamine effectively reversed the anticoagulant activity of unfractionated heparin in plasma. However, elevated protamine concentrations were associated with progressive dose-dependent reduction in thrombin generation. To assess the mechanism by which protamine mediates down-regulation of thrombin generation, the effect of protamine on factor V activation was assessed. Protamine was found to significantly reduce the rate of factor V activation by both thrombin and factor Xa. Protamine mediates its anticoagulant activity in plasma by down-regulation of thrombin generation via a novel mechanism, specifically inhibition of factor V activation.


2008 ◽  
Vol 100 (12) ◽  
pp. 1058-1067 ◽  
Author(s):  
Samira B. Jeimy ◽  
Nola Fuller ◽  
Subia Tasneem ◽  
Kenneth Segers ◽  
Alan R. Stafford ◽  
...  

SummaryMultimerin 1 (MMRN1) is a polymeric, factorV (FV) binding protein that is stored in platelet and endothelial cell secretion granules but is undetectable in normal plasma. In human platelet α-granules, FV is stored complexed to MMRN1, predominantly by noncovalent binding interactions. The FV binding site for MMRN1 is located in the light chain, where it overlaps the C1 and C2 domain membrane binding sites essential for activated FV (FVa) procoagulant function. Surface plasmon resonance (SPR), circular dichroism (CD) and thrombin generation assays were used to study the binding of FV and FVa to MMRN1, and the functional consequences. FV and FVa bound MMRN1 with high affinities (KD:2 and 7 nM, respectively). FV dissociated more slowly from MMRN1 than FVa in SPR experiments, and CD analyses suggested greater conformational changes in mixtures of FV and MMRN1 than in mixtures of FV and MMRN1. SPR analyses indicated that soluble phosphatidylserine (1,2-Dicaproylsn-glycero-3-phospho-L-serine) competitively inhibited both FV-MMRN1 and FVa-MMRN1 binding. Furthermore, exogenous MMRN1 delayed and reduced thrombin generation by plasma and platelets, and it reduced thrombin generation by preformed FVa. Exogenous MMRN1 also delayed FV activation, triggered by adding tissue factor to plasma, or by adding purified thrombin or factor Xa to purified FV. The high affinity binding of FV to MMRN1 may facilitate the costorage of the two proteins in platelet α-granules. As a consequence, MMRN1 release during platelet activation may limit platelet dependent thrombin generation in vivo.


Sign in / Sign up

Export Citation Format

Share Document