scholarly journals A Soluble Tissue Factor Mutant Is a Selective Anticoagulant and Antithrombotic Agent

Blood ◽  
1997 ◽  
Vol 89 (9) ◽  
pp. 3219-3227 ◽  
Author(s):  
Robert F. Kelley ◽  
Canio J. Refino ◽  
Mark P. O'Connell ◽  
Nishit Modi ◽  
Pat Sehl ◽  
...  

Abstract One approach to developing safer and more efficacious agents for the treatment of thrombotic disease involves the design and testing of inhibitors that block specific steps in the coagulation cascade. We describe here the development of a mutant of human tissue factor (TF ) as a specific antagonist of the extrinsic pathway of blood coagulation and the testing of this mutant in a rabbit model of arterial thrombosis. Alanine substitutions of Lys residues 165 and 166 in human TF have been shown previously to diminish the cofactor function of TF in support of factor X (FX) activation catalyzed by factor VIIa (FVIIa). The K165A:K166A mutations have been incorporated into soluble TF (sTF; residues 1-219) to generate the molecule “hTFAA.” hTFAA binds FVIIa with kinetics and affinity equivalent to wild-type sTF, but the hTFAA⋅FVIIa complex shows a 34-fold reduction in catalytic efficiency for FX activation relative to the activity measured for sTF⋅FVIIa. hTFAA inhibits the activation of FX catalyzed by the complex formed between FVIIa and relipidated TF(1-243). hTFAA prolongs prothrombin time (PT) determined with human plasma and relipidated TF(1-243) or membrane bound TF, and has no effect on activated partial thromboplastin time, but is 70-fold less potent as an inhibitor of PT with rabbit plasma. The rabbit homologue of this mutant (“rTFAA”) was produced and shown to have greater potency with rabbit plasma. Both hTFAA and rTFAA display an antithrombotic effect in a rabbit model of arterial thrombosis with rTFAA giving full efficacy at a lower dose than hTFAA. Compared to heparin doses of equal antithrombotic potential, hTFAA and rTFAA cause less bleeding as judged by measurements of the cuticle bleeding time. These results indicate that TF⋅FVIIa is a good target for the development of new anticoagulant drugs for the treatment of thrombotic disease.

Blood ◽  
1987 ◽  
Vol 69 (2) ◽  
pp. 645-651 ◽  
Author(s):  
LV Rao ◽  
SI Rapaport

Abstract We have extended earlier studies (Blood 66:204, 1985) of a mechanism of inhibition of factor VIIa/tissue factor activity that requires a plasma component (called herein extrinsic pathway inhibitor or EPI) and factor Xa. An activated peptide release assay using 3H-factor IX as a substrate was used to evaluate inhibition. Increasing the tissue factor concentration from 20% to 40% (vol/vol) overcame the inhibitory mechanism in normal plasma but not in factor VII-deficient plasma supplemented with a low concentration of factor VII. A second wave of factor IX activation obtained by a second addition of tissue factor to plasma with a normal factor VII concentration was almost abolished by supplementing the reaction mixture with additional EPI and factor X. Factor Xa's active site was necessary for factor Xa's contribution to inhibition, but preliminary incubation of factor Xa with EPI in the absence of factor VIIa/tissue factor complex or of factor VIIa/tissue factor complex in the absence of EPI did not replace the need for the simultaneous presence of factor Xa, factor VIIa/tissue factor, calcium, and EPI in an inhibitory reaction mixture. Inhibition of factor VIIa/tissue factor was reversible; both tissue factor and factor VIIa activity could be recovered from a dissociated, inhibited factor VIIa/tissue factor complex. EPI appeared to bind to a factor VIIa/tissue factor complex formed in the presence of factor Xa but not to a factor VIIa/tissue factor complex formed in the absence of factor Xa.


1990 ◽  
Vol 265 (2) ◽  
pp. 327-336 ◽  
Author(s):  
V J J Bom ◽  
R M Bertina

In the extrinsic pathway of blood coagulation, Factor X is activated by a complex of tissue factor, factor VII(a) and Ca2+ ions. Using purified human coagulation factors and a sensitive spectrophotometric assay for Factor Xa, we could demonstrate activation of Factor X by Factor VIIa in the absence of tissue-factor apoprotein, phospholipids and Ca2+. This finding allowed a kinetic analysis of the contribution of each of the cofactors. Ca2+ stimulated the reaction rate 10-fold at an optimum of 6 mM (Vmax. of 1.1 x 10(-3) min-1) mainly by decreasing the Km of Factor X (to 11.4 microM). In the presence of Ca2+, 25 microM-phospholipid caused a 150-fold decrease of the apparent Km and a 2-fold increase of the apparent Vmax. of the reaction; however, both kinetic parameters increased with increasing phospholipid concentration. Tissue-factor apoprotein contributed to the reaction rate mainly by an increase of the Vmax., in both the presence (40,500-fold) and absence (4900-fold) of phospholipid. The formation of a ternary complex of Factor VIIa with tissue-factor apoprotein and phospholipid was responsible for a 15 million-fold increase in the catalytic efficiency of Factor X activation. The presence of Ca2+ was absolutely required for the stimulatory effects of phospholipid and apoprotein. The data fit a general model in which the Ca2(+)-dependent conformation allows Factor VIIa to bind tissue-factor apoprotein and/or a negatively charged phospholipid surface resulting into a decreased intrinsic Km and an increased Vmax. for the activation of fluid-phase Factor X.


Blood ◽  
1990 ◽  
Vol 75 (5) ◽  
pp. 1069-1073 ◽  
Author(s):  
LV Rao ◽  
SI Rapaport

Abstract Infusing factor VIIa (FVIIa) has been reported to control bleeding in hemophilic patients with factor VIII (FVIII) inhibitors. This is difficult to attribute to an enhanced FVIIa/tissue factor (TF) activation of factor X, since in vitro studies suggest that infusion of FVIIa should neither increase substantially the rate of formation of FVIIa/TF complexes during hemostasis (Proc Natl Acad Sci USA 85:6687, 1988) nor bypass the dampening of TF-dependent coagulation by the extrinsic pathway inhibitor (EPI) (Blood 73:359, 1989). Partial thromboplastin times have also been reported to shorten after infusion of FVIIa. The experiments reported herein establish that shortening of partial thromboplastin times after adding FVIIa to hemophilic plasma in vitro stems from an FVIIa-catalyzed activation of factor X independent of possible trace contamination of reagents with TF. Experiments in purified systems confirmed that FVIIa can slowly activate factor X in a reaction mixture containing Ca2+ and phospholipid but no source of TF. The rate of activation was sufficient to account for the shortening of partial thromboplastin times observed. EPI, which turned off continuing FVIIa/TF activation of factor X, was unable to prevent continuing FVIIa/phospholipid activation of factor X. Because circulating plasma contains only a trace, if any, free FVIIa, such a reaction could never occur physiologically. However, infusing FVIIa creates a nonphysiologic circumstance in which a continuing slow FVIIa/phospholipid catalyzed activation of factor X could conceivably proceed in vivo unimpeded by EPI. Such a mechanism of factor X activation might compensate for an impaired factor IXa/FVIIIa/phospholipid activation of factor X during hemostatis, and therefore control bleeding in a hemophilic patient.


Blood ◽  
1989 ◽  
Vol 74 (3) ◽  
pp. 994-998 ◽  
Author(s):  
TA Warr ◽  
LV Rao ◽  
SI Rapaport

Abstract Plasma or serum extrinsic pathway inhibitor (EPI) activity was measured in 24 patients with disseminated intravascular coagulation (DIC) and in 23 patients with severe hepatocellular disease. EPI was measured as activity in a test sample that inhibited factor VIIa/tissue factor (TF)- catalyzed activation of 3H-factor IX (activation peptide release) in the presence of factor X. Of the 24 patients with DIC, 13 had sepsis and five had metastatic carcinoma, disorders in which tissue factor is believed to initiate DIC. EPI activity ranged from 68% to 300% (mean 134% +/- 50%). Serial measurements in nine patients failed to show depletion of EPI activity coincident with worsening DIC. DIC induced by tissue factor or other activating materials may progress despite normal EPI levels. In the patients with liver disease, of whom 15 had decompensated chronic hepatocellular disease (two fatal cases) and eight had acute fulminant liver failure (seven fatal cases), plasma or serum EPI activity varied from less than 20% to 194%. Values were distributed in a bimodal fashion. EPI activity could not be correlated with either the etiology of the liver disease or the degree of prolongation of the prothrombin time. Patients with chronic hepatocellular disease who survived had normal or elevated EPI activity. Patients with fatal hepatic dysfunction had low, normal, or high values for EPI activity. This must mean that secretion of EPI from cells other than hepatocytes can maintain normal plasma EPI levels.


2001 ◽  
Vol 86 (12) ◽  
pp. 1353-1359 ◽  
Author(s):  
Maikel Peppelenbosch ◽  
Arnold Spek ◽  
Henri Versteeg

SummaryTissue factor, a 47 kDa membrane glycoprotein, lies at the basis of the extrinsic pathway of the coagulation cascade. Interaction of TF with factor VIIa results in the formation of fibrin from fibrinogen, thereby inducing the formation of a blood clot. In addition to this well-established role in blood coagulation, TF is associated with various other physiological processes such as sepsis, inflammation, angiogenesis, metastasis and atherosclerosis. The molecular basis of the latter events is slowly emerging. It has become clear that TF-FVIIa interaction elicits a variety of intracellular signalling events that may be implicated in these actions. These events include the sequential activation of Src-like kinases, MAP kinases, small GTPases and calcium signalling. How this progress in the understanding of TF associated signal transduction may generate answers as to the mechanism through which TF exerts it pleiotropic effects will be focus of this review.


1999 ◽  
Vol 82 (08) ◽  
pp. 209-217 ◽  
Author(s):  
Patrick Celie ◽  
Joost Kolkman ◽  
Peter Lenting ◽  
Koen Mertens

IntroductionThe activation of factor X is one of the steps in the coagulation cascade that is driven by the assembly of an activated serine protease with a membrane-bound cofactor. In the initial phase of coagulation, factor X is activated by the complex of activated factor VII (factor VIIa) and tissue factor. Subsequently, during the so-called propagation phase, factor X activation is catalyzed by the complex of activated factor IX (factor IXa) and activated factor VIII (factor VIIIa). In these complexes, factor VIIa and factor IXa are the factor X-activating enzymes, whereas tissue factor and factor VIIIa serve as non-enzymatic cofactors.1 Factors VIIa and IXa are highly homologous to other cofactor-dependent enzymes, such as activated factor X (factor Xa) and activated protein C, both in amino acid sequence, domain organization, and three-dimensional structure.2 Factor VIIa and IXa further share low or negligible activity towards their natural substrate factor X, unless in complex with their physiological cofactors.Although tissue factor and factor VIIIa serve similar roles as biological amplifiers, they are structurally different. Tissue factor is a small, transmembrane protein with an extracellular part comprising 219 amino acids. Factor VIII is much larger (2,332 amino acids), circulates in plasma, and requires proteolytic processing to exert its biological activity.3 When cofactors are assembled with their respective enzymes, a dramatic increase in enzymatic activity occurs. The underlying molecular mechanism, however, remains poorly understood.During the past few years, remarkable progress has been made in understanding the molecular details of enzyme-cofactor assembly within the coagulation cascade. Crystallography has provided high-resolution structures of tissue factor4 and the various cofactor-dependent coagulation enzymes.2 Moreover, the crystal structure of the factor VIIa—tissue factor complex has been resolved and has allowed the identification of the molecular sites involved in enzyme-cofactor interaction.5,6 Such details are still lacking, however, for the factor IXa—factor VIIIa complex. Current views are derived from three-dimensional models generated by homology modeling based on structurally-related proteins, such as nitrite reductase,7 ceruloplasmin,8 and galactose oxidase.9 Despite their inherent limitations, these models greatly facilitate the interpretation of previous functional studies on factor X activation. As such, the availability of molecular models may be considered an important step toward resolving the structure of the factor IXa—factor VIIIa complex and understanding the role of complex assembly and defects thereof. This chapter provides an overview of the current developments in this field.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2210-2210
Author(s):  
Michael Dockal ◽  
Robert Pachlinger ◽  
Angelina Baldin-Stoyanova ◽  
Fabian Knofl ◽  
Nadja Ullrich ◽  
...  

Abstract Abstract 2210 Tissue factor pathway inhibitor (TFPI) is a key regulator of factor X (FX) activation in the extrinsic pathway of blood coagulation. TFPI inhibits FXa generation by formation of a quaternary complex consisting of factor VIIa (FVIIa), tissue factor (TF), FXa and TFPI. The main portion (∼80%) of TFPI in humans is reportedly associated with endothelial cells. We used human umbilical vein endothelial cells (HUVECs) as a model to obtain further insight into the function of TFPIα and the glycosylphosphatidylinositol (GPI) anchored TFPI form, which represents TFPIα bound to GPI-anchored surface proteins and/or TFPIβ. In contrast to TFPIα, which consists of 3 Kunitz domains (KD) and a basic C-terminal part, GPI-anchored TFPIβ lacks the third Kunitz domain (KD3) and the basic C–terminal region due to alternative splicing. In TFPIβ these two domains are replaced by a sequence that adds a GPI anchor to the protein linking it to the cell membrane. Treatment of HUVECs with phosphatidylinositol phospholipase C (PI-PLC) that cleaves GPI-anchors and subsequent fluorescence activated cell sorting (FACS) on living cells showed that GPI-anchored TFPI represents about 70–80% of cell surface TFPI. Staining of TFPI on and in fixed and permeabilized cells (total TFPI) demonstrated that GPI-anchored cell surface TFPI contributes to ∼20% of total cellular TFPI. Enzyme-linked immunosorbent assay (ELISA) showed that PI-PLC treatment released a TFPI protein lacking the KD3 and basic C-terminus. These findings strongly suggest that TFPIβ is the predominant GPI-anchored form of TFPI on HUVECs. FX activation assays performed on the cell surface of PI-PLC treated living HUVECs showed the importance of GPI-anchored TFPI on extrinsic Xase complex activity. PI-PLC treatment resulted in increased FX activation. Although GPI-anchored TFPI displays ∼70–80% of cell surface TFPI, overall FXa generation was increased only by ∼50%. In conclusion, HUVEC surface TFPI is predominantly TFPIβ, and GPI-anchored TFPI is the main but not sole regulator of FX activation on the surface of HUVECs. Disclosures: No relevant conflicts of interest to declare.


1996 ◽  
Vol 133 (2) ◽  
pp. 293-304 ◽  
Author(s):  
J R Sevinsky ◽  
L V Rao ◽  
W Ruf

The ability to regulate proteolytic functions is critical to cell biology. We describe events that regulate the initiation of the coagulation cascade on endothelial cell surfaces. The transmembrane protease receptor tissue factor (TF) triggers coagulation by forming an enzymatic complex with the serine protease factor VIIa (VIIa) that activates substrate factor X to the protease factor Xa (Xa). Feedback inhibition of the TF-VIIa enzymatic complex is achieved by the formation of a quaternary complex of TF-VIIa, Xa, and the Kunitz-type inhibitor tissue factor pathway inhibitor (TFPI). Concomitant with the downregulation of TF-VIIa function on endothelial cells, we demonstrate by immunogold EM that TF redistributes to caveolae. Consistently, TF translocates from the Triton X-100-soluble membrane fractions to low-density, detergent-insoluble microdomains that inefficiently support TF-VIIa proteolytic function. Downregulation of TF-VIIa function is dependent on quaternary complex formation with TFPI that is detected predominantly in detergent-insoluble microdomains. Partitioning of TFPI into low-density fractions results from the association of the inhibitor with glycosyl phosphatidylinositol anchored binding sites on external membranes. Free Xa is not efficiently bound by cell-associated TFPI; hence, we propose that the transient ternary complex of TF-VIIa with Xa supports translocation and assembly with TFPI in glycosphingolipid-rich microdomains. The redistribution of TF provides evidence for an assembly-dependent translocation of the inhibited TF initiation complex into caveolae, thus implicating caveolae in the regulation of cell surface proteolytic activity.


2009 ◽  
Vol 118 (3) ◽  
pp. 159-172 ◽  
Author(s):  
Alexander Breitenstein ◽  
Giovanni G. Camici ◽  
Felix C. Tanner

TF (tissue factor) is the main trigger of the coagulation cascade; by binding Factor VIIa it activates Factor IX and Factor X, thereby resulting in fibrin formation. Various stimuli, such as cytokines, growth factors and biogenic amines, induce TF expression and activity in vascular cells. Downstream targets of these mediators include diverse signalling molecules such as MAPKs (mitogen-activated protein kinases), PI3K (phosphoinositide 3-kinase) and PKC (protein kinase C). In addition, TF can be detected in the bloodstream, known as circulating or blood-borne TF. Many cardiovascular risk factors, such as hypertension, diabetes, dyslipidaemia and smoking, are associated with increased expression of TF. Furthermore, in patients presenting with acute coronary syndromes, elevated levels of circulating TF are found. Apart from its role in thrombosis, TF has pro-atherogenic properties, as it is involved in neointima formation by inducing vascular smooth muscle cell migration. As inhibition of TF action appears to be an attractive target for the treatment of cardiovascular disease, therapeutic strategies are under investigation to specifically interfere with the action of TF or, alternatively, promote the effects of TFPI (TF pathway inhibitor).


Blood ◽  
1990 ◽  
Vol 75 (5) ◽  
pp. 1069-1073 ◽  
Author(s):  
LV Rao ◽  
SI Rapaport

Infusing factor VIIa (FVIIa) has been reported to control bleeding in hemophilic patients with factor VIII (FVIII) inhibitors. This is difficult to attribute to an enhanced FVIIa/tissue factor (TF) activation of factor X, since in vitro studies suggest that infusion of FVIIa should neither increase substantially the rate of formation of FVIIa/TF complexes during hemostasis (Proc Natl Acad Sci USA 85:6687, 1988) nor bypass the dampening of TF-dependent coagulation by the extrinsic pathway inhibitor (EPI) (Blood 73:359, 1989). Partial thromboplastin times have also been reported to shorten after infusion of FVIIa. The experiments reported herein establish that shortening of partial thromboplastin times after adding FVIIa to hemophilic plasma in vitro stems from an FVIIa-catalyzed activation of factor X independent of possible trace contamination of reagents with TF. Experiments in purified systems confirmed that FVIIa can slowly activate factor X in a reaction mixture containing Ca2+ and phospholipid but no source of TF. The rate of activation was sufficient to account for the shortening of partial thromboplastin times observed. EPI, which turned off continuing FVIIa/TF activation of factor X, was unable to prevent continuing FVIIa/phospholipid activation of factor X. Because circulating plasma contains only a trace, if any, free FVIIa, such a reaction could never occur physiologically. However, infusing FVIIa creates a nonphysiologic circumstance in which a continuing slow FVIIa/phospholipid catalyzed activation of factor X could conceivably proceed in vivo unimpeded by EPI. Such a mechanism of factor X activation might compensate for an impaired factor IXa/FVIIIa/phospholipid activation of factor X during hemostatis, and therefore control bleeding in a hemophilic patient.


Sign in / Sign up

Export Citation Format

Share Document