scholarly journals Retinoic Acid Induces Aggregation of the Acute Promyelocytic Leukemia Cell Line NB-4 by Utilization of LFA-1 and ICAM-2

Blood ◽  
1997 ◽  
Vol 90 (7) ◽  
pp. 2747-2756 ◽  
Author(s):  
Richard S. Larson ◽  
David C. Brown ◽  
Larry A. Sklar

Abstract All-trans retinoic acid (tRA) is a potent differentiation agent that is effective therapy for acute promyelocytic leukemia (APL). However, 5% to 25% of patients develop retinoic acid syndrome, a potentially life-threatening complication in which the pathogenesis relates to adhesive alterations of APL cells. Therefore, we investigated the relationship between tRA-induced differentiation and the adhesive properties of APL cells. After confirming differentiation-related morphological changes of NB-4 cells in response to tRA, we showed that homotypic aggregation of NB-4 cells grown in tRA for 72 hours is dose-dependent with a median effective dose of approximately 50 nmol/L. Maximal aggregation occurred at mean and peak therapeutic serum concentrations (100 and 1,000 nmol/L, respectively). Aggregation also increased with the length of tRA exposure over 168 hours. Aggregation was inhibited by neutralizing antibodies against LFA-1 and ICAM-2. Notably, antibodies directed against VLA-4, other β2 integrins (Mac-1 and p150), or other potential LFA-1 counterstructures that were expressed on the cell surface (ICAM-1 and ICAM-3) did not block aggregation. Aggregation occurred with similar kinetics regardless of the presence of phorbol ester or the “activating” monoclonal antibody (MoAb) KIM 185, suggesting that the avidity of LFA-1 is not modulated on NB-4 cells in a manner similar to other leukocytes. Consistent with the prompt clinical effectiveness of methyl prednisolone sodium succinate (MPSS) in retinoic acid syndrome, MPSS rapidly inhibited homotypic aggregation in a dose-dependent manner. Thus, tRA alters the adhesive properties of APL cells by inducing the expression of high-avidity β2 integrins, aggregation is inhibited by LFA-1 and ICAM-2 MoAb, and tRA effects are rapidly reversible by MPSS. Taken together, our findings provide a clinically relevant system for study of LFA-1/ICAM-2 interaction and suggest a mechanism in part for retinoic acid syndrome and the effectiveness of MPSS in ameliorating retinoic acid syndrome.

Blood ◽  
1997 ◽  
Vol 90 (7) ◽  
pp. 2747-2756 ◽  
Author(s):  
Richard S. Larson ◽  
David C. Brown ◽  
Larry A. Sklar

All-trans retinoic acid (tRA) is a potent differentiation agent that is effective therapy for acute promyelocytic leukemia (APL). However, 5% to 25% of patients develop retinoic acid syndrome, a potentially life-threatening complication in which the pathogenesis relates to adhesive alterations of APL cells. Therefore, we investigated the relationship between tRA-induced differentiation and the adhesive properties of APL cells. After confirming differentiation-related morphological changes of NB-4 cells in response to tRA, we showed that homotypic aggregation of NB-4 cells grown in tRA for 72 hours is dose-dependent with a median effective dose of approximately 50 nmol/L. Maximal aggregation occurred at mean and peak therapeutic serum concentrations (100 and 1,000 nmol/L, respectively). Aggregation also increased with the length of tRA exposure over 168 hours. Aggregation was inhibited by neutralizing antibodies against LFA-1 and ICAM-2. Notably, antibodies directed against VLA-4, other β2 integrins (Mac-1 and p150), or other potential LFA-1 counterstructures that were expressed on the cell surface (ICAM-1 and ICAM-3) did not block aggregation. Aggregation occurred with similar kinetics regardless of the presence of phorbol ester or the “activating” monoclonal antibody (MoAb) KIM 185, suggesting that the avidity of LFA-1 is not modulated on NB-4 cells in a manner similar to other leukocytes. Consistent with the prompt clinical effectiveness of methyl prednisolone sodium succinate (MPSS) in retinoic acid syndrome, MPSS rapidly inhibited homotypic aggregation in a dose-dependent manner. Thus, tRA alters the adhesive properties of APL cells by inducing the expression of high-avidity β2 integrins, aggregation is inhibited by LFA-1 and ICAM-2 MoAb, and tRA effects are rapidly reversible by MPSS. Taken together, our findings provide a clinically relevant system for study of LFA-1/ICAM-2 interaction and suggest a mechanism in part for retinoic acid syndrome and the effectiveness of MPSS in ameliorating retinoic acid syndrome.


Blood ◽  
2002 ◽  
Vol 99 (3) ◽  
pp. 1014-1022 ◽  
Author(s):  
Qi Zhu ◽  
Ji-Wang Zhang ◽  
Hai-Qing Zhu ◽  
Yu-Lei Shen ◽  
Maria Flexor ◽  
...  

Abstract Acute promyelocytic leukemia (APL) is characterized by the specific chromosome translocation t(15;17) with promyelocytic leukemia-retinoic acid receptor-α (PML-RARA) fusion gene and the ability to undergo terminal differentiation as an effect of all-trans retinoic acid (ATRA). Recently, arsenic trioxide (As2O3) has been identified as an alternative therapy in patients with both ATRA-sensitive and ATRA-resistant APL. At the cellular level, As2O3 triggers apoptosis and a partial differentiation of APL cells in a dose-dependent manner; both effects are observed in vivo among patients with APL and APL animal models. To further explore the mechanism of As2O3-induced differentiation, the combined effects of arsenic and a number of other differentiation inducers on APL cell lines (NB4 and NB4-R1) and some fresh APL cells were examined. The data show that a strong synergy exists between a low concentration of As2O3 (0.25 μM) and the cyclic adenosine monophosphate (cAMP) analogue, 8-CPT-cAMP, in fully inducing differentiation of NB4, NB4-R1, and fresh APL cells. Furthermore, cAMP facilitated the degradation of As2O3-mediated fusion protein PML-RARα, a process considered to play a key role in overcoming the differentiation arrest of APL cells. On the other hand, cAMP could significantly inhibit cell growth by modulating several major players in G1/S transition regulation. Interestingly, H89, an antagonist of protein kinase A, could block the differentiation-inducing effect of As2O3potentiated by cAMP. These results thus support the existence of a novel signaling cross-talk for APL maturation, which may deepen understanding of As2O3-induced differentiation in vivo, and thus furnish insights for new therapeutic strategies.


Cancers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 648 ◽  
Author(s):  
Károly Jambrovics ◽  
Iván P. Uray ◽  
Jeffrey W. Keillor ◽  
László Fésüs ◽  
Zoltán Balajthy

Randomized trials in acute promyelocytic leukemia patients have shown that treatment with a combination of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) is superior in efficacy to monotherapy, with significantly decreased mortality. So far, there are little data available to explain the success of the ATRA and ATO combination treatment in molecular terms. We showed that ATRA- and ATO-treated cells had the same capacity for superoxide production, which was reduced by two-thirds in the combined treatment. Secreted inflammatory biomarkers (monocyte chemoattractant protein-1 [MCP-1], interleukin-1 beta [IL-1β] and tumor necrosis factor-α [TNF-α]) were significantly decreased and were further reduced in a transglutaminase 2 (TG2) expression-dependent manner. The amount of secreted TNF-α in the supernatant of NB4 TG2 knockout cells was close to 50 times lower than in ATRA-treated differentiated wild-type NB4 cells. The irreversible inhibitor of TG2 NC9 not only decreased reactive oxygen species production 28-fold, but decreased the concentration of MCP-1, IL-1β and TNF-α 8-, 15- and 61-fold, respectively in the combined ATRA + ATO-treated wild-type NB4 cell culture. We propose that atypical expression of TG2 leads to the generation of inflammation, which thereby serves as a potential target for the prevention of differentiation syndrome.


2013 ◽  
Vol 44 (4) ◽  
pp. 348-352 ◽  
Author(s):  
Tae-Young Kim ◽  
Chi Hoon Maeng ◽  
Si-Young Kim ◽  
Hwi-Joong Yoon ◽  
Kyung Sam Cho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document