scholarly journals Molecular Characterization of the t(8; 13)(p11;q12) Translocation Associated With an Atypical Myeloproliferative Disorder: Evidence for Three Discrete Loci Involved in Myeloid Leukemias on 8p11

Blood ◽  
1997 ◽  
Vol 90 (8) ◽  
pp. 3136-3141 ◽  
Author(s):  
Ivan H. Still ◽  
Olga Chernova ◽  
David Hurd ◽  
Richard M. Stone ◽  
John K. Cowell

Abstract A reciprocal chromosome translocation between 13q12 and 8p11 is the consistent cytogenetic abnormality seen in a nonspecific myeloproliferative disorder that is associated with T-cell leukemia/lymphoma and peripheral blood eosinophilia. Detailed molecular analyses of the translocation breakpoints associated with this rearrangement have not been reported to date. We have now generated somatic cell hybrids from a newly described patient with this specific structural rearrangement and analyzed the breakpoints on the derivative chromosomes. We have shown that the breakpoint on chromosome 13 lies within a 300- to 500-kb region defined by the KIAA177 gene and D13S1123 marker. In addition, we have identified a 1.2-Mb YAC, 959A4, that crosses the translocation breakpoint on the short arm of chromosome 8 in this patient. The location of this breakpoint in 8p11 is distinct from the t(8; 16) and t(8; 22) translocations associated with M4/M5 myeloid leukemias, and suggests that three distinct loci located within 8p11 are involved in the pathogenesis of myeloid neoplasias.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2349-2349 ◽  
Author(s):  
Konstanze Dohner ◽  
Marianne Habdank ◽  
Frank G. Rucker ◽  
Simone Miller ◽  
Stefan Frohling ◽  
...  

Abstract In recent years several groups initiated the molecular characterization of deletion and translocation breakpoints affecting the long arm of chromosome 7 (7q−) to identify genes that are involved in the pathogenesis of myeloid leukemias. Based on these studies a commonly deleted segment (CDS) of approximately 2 Mb in size was identified in chromosomal band 7q22 flanked by the microsatellite markers D7S1503 and D7S1841. Recently, the MLL5 gene (mixed lineage leukemia 5) has been cloned and mapped to the CDS as an interesting candidate gene for chromosome 7q associated leukemias. However, the pathogenic role of MLL5 in myeloid leukemias has not been demonstrated yet. In addition, for the less frequent deletion/translocation breakpoints affecting the distal part of chromosome 7q a 4 to 5 Mb sized CDS was defined encompassing chromosomal bands 7q35 to q36. The heterogeneity of deletion/translocation breakpoints on 7q suggests the existence of more than one disease-related gene. We aimed to identify and characterize translocation and deletion breakpoints in a large series of myeloid leukemias with chromosome 7q aberrations using fluorescence in situ hybridisation (FISH) and array-based comparative genomic hybridization (array CGH). Once, novel hot spot regions were identified, transcriptional map(s) were constructed allowing the identification of candidate genes, expressed sequences or miR-sites. FISH with a physical map of well defined YAC/BAC/PAC clones covering the long arm of chromosome 7 was performed on a series of 105 myeloid leukemias [acute myeloid leukaemia, (AML); myelodysplastic syndrome (MDS); myeloproliferative disorders, (MPD)] exhibiting chromosome 7q aberrations on banding analysis. Selected patients were analysed by array CGH and results were confirmed by hybridisation of the corresponding DNA clones. Transcriptional map(s) were constructed using public databases. While most of the deletions were large encompassing the previously published CDS, we identified a distinct 2 Mb sized CDS in the proximal part of 7q22 that was defined by five patients all exhibiting small deletions. This segment contains several candidate genes including the putative tumor-suppressor genes CUTL1, RASA4, EPO and FBXL13. Interestingly, this CDS is located close to multiple miR-sites, which usually indicate common fragile sites in the human genome. In chromosomal bands 7q35–q36 we localized the breakpoint of an unbalanced translocation from a patient with secondary AML between the markers D7S1925 and D7S1395. This region was recently characterized as a common fragile site in the human genome, named FRA7I. Furthermore, the translocation breakpoint t(3;7)(p13;q35) of a second patient with therapy-related AML was cloned into a 100 kb sized genomic segment located centromeric the CNTNAP2-gene close to the proximal border of the CDS. Our data further indicate the remarkable heterogeneity of deletion and translocation breakpoints on 7q supporting the hypothesis of multiple genes involved in 7q-associated myeloid leukemias. Using techniques such as FISH and array CGH known CDS as well as novel hot spot regions were identified. Transcriptional maps from those regions may serve as important starting points for the identification of pathogenetically relevant genes.


1981 ◽  
Vol 22 (7) ◽  
pp. 1079-1083
Author(s):  
J C Klock ◽  
J L D'Angona ◽  
B A Macher

2021 ◽  
Vol 7 (20) ◽  
pp. eabe3392
Author(s):  
Erin G. Teich ◽  
K. Lawrence Galloway ◽  
Paulo E. Arratia ◽  
Danielle S. Bassett

The nature of yield in amorphous materials under stress has yet to be fully elucidated. In particular, understanding how microscopic rearrangement gives rise to macroscopic structural and rheological signatures in disordered systems is vital for the prediction and characterization of yield and the study of how memory is stored in disordered materials. Here, we investigate the evolution of local structural homogeneity on an individual particle level in amorphous jammed two-dimensional (athermal) systems under oscillatory shear and relate this evolution to rearrangement, memory, and macroscale rheological measurements. We define the structural metric crystalline shielding, and show that it is predictive of rearrangement propensity and structural volatility of individual particles under shear. We use this metric to identify localized regions of the system in which the material’s memory of its preparation is preserved. Our results contribute to a growing understanding of how local structure relates to dynamic response and memory in disordered systems.


1994 ◽  
Vol 77 (2) ◽  
pp. 157
Author(s):  
Nadine Van Roy ◽  
Geneviève Laureys ◽  
Ngan Ching Cheng ◽  
Ghislain Opdenakker ◽  
Rogier Versteeg ◽  
...  

1984 ◽  
Vol 81 (3) ◽  
pp. 829-833 ◽  
Author(s):  
L. W. Stanton ◽  
J. Q. Yang ◽  
L. A. Eckhardt ◽  
L. J. Harris ◽  
B. K. Birshtein ◽  
...  

2017 ◽  
Vol 152 (3) ◽  
pp. 117-121
Author(s):  
My Linh Thibodeau ◽  
Michelle Steinraths ◽  
Lindsay Brown ◽  
Zheyuan Zong ◽  
Naomi Shomer ◽  
...  

A 41-year-old Asian woman with bilateral renal angiomyolipomas (AML) was incidentally identified to have a balanced translocation, 46,XX,t(11;12)(p15.4;q15). She had no other features or family history to suggest a diagnosis of tuberous sclerosis. Her healthy daughter had the same translocation and no renal AML at the age of 3 years. Whole-genome sequencing was performed on genomic maternal DNA isolated from blood. A targeted de novo assembly was then conducted with ABySS for chromosomes 11 and 12. Sanger sequencing was used to validate the translocation breakpoints. As a result, genomic characterization of chromosomes 11 and 12 revealed that the 11p breakpoint disrupted the NUP98 gene in intron 1, causing a separation of the promoter and transcription start site from the rest of the gene. The translocation breakpoint on chromosome 12q was located in a gene desert. NUP98 has not yet been associated with renal AML pathogenesis, but somatic NUP98 alterations are recurrently implicated in hematological malignancies, most often following a gene fusion event. We also found evidence for complex structural events involving chromosome 12, which appear to disrupt the TDG gene. We identified a TDGP1 partially processed pseudogene at 12p12.1, which adds complexity to the de novo assembly. In conclusion, this is the first report of a germline constitutional structural chromosome rearrangement disrupting NUP98 that occurred in a generally healthy woman with bilateral renal AML.


2011 ◽  
Vol 22 (11-12) ◽  
pp. 685-691 ◽  
Author(s):  
Laura G. Reinholdt ◽  
Yueming Ding ◽  
Griffith T. Gilbert ◽  
Anne Czechanski ◽  
Jeffrey P. Solzak ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document