Immunization With Recombinant Human Granulocyte-Macrophage Colony-Stimulating Factor as a Vaccine Adjuvant Elicits Both a Cellular and Humoral Response to Recombinant Human Granulocyte-Macrophage Colony-Stimulating Factor

Blood ◽  
1999 ◽  
Vol 93 (8) ◽  
pp. 2653-2659 ◽  
Author(s):  
Douglas G. McNeel ◽  
Kathy Schiffman ◽  
Mary L. Disis

Abstract Granulocyte-macrophage colony-stimulating factor (GM-CSF) is an important cytokine for the generation and propagation of antigen-presenting cells and for priming a cellular immune response. We report here that use of recombinant human GM-CSF (rhGM-CSF), administered as an adjuvant in a peptide-based vaccine trial given monthly by intradermal injection, led to the development of a T-cell and antibody response to rhGM-CSF. An antibody response occurred in the majority of patients (72%). This antibody response was not found to be neutralizing. In addition, by 48-hour delayed type hypersensitivity (DTH) skin testing, 17% of patients were shown to have a cellular immune response to the adjuvant rhGM-CSF alone. Thymidine incorporation assays also showed a peripheral blood T-cell response to rhGM-CSF in at least 17% of the patients. The generation of rhGM-CSF–specific T-cell immune responses, elicited in this fashion, is an important observation because rhGM-CSF is being used as a vaccine adjuvant in various vaccine strategies. rhGM-CSF–specific immune responses may be incorrectly interpreted as antigen-specific immunity, particularly when local DTH responses to vaccination are the primary means of immunologic evaluation. We found no evidence of hematologic or infectious complications as a result of the development of rhGM-CSF–specific immune responses.

Blood ◽  
1999 ◽  
Vol 93 (8) ◽  
pp. 2653-2659
Author(s):  
Douglas G. McNeel ◽  
Kathy Schiffman ◽  
Mary L. Disis

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is an important cytokine for the generation and propagation of antigen-presenting cells and for priming a cellular immune response. We report here that use of recombinant human GM-CSF (rhGM-CSF), administered as an adjuvant in a peptide-based vaccine trial given monthly by intradermal injection, led to the development of a T-cell and antibody response to rhGM-CSF. An antibody response occurred in the majority of patients (72%). This antibody response was not found to be neutralizing. In addition, by 48-hour delayed type hypersensitivity (DTH) skin testing, 17% of patients were shown to have a cellular immune response to the adjuvant rhGM-CSF alone. Thymidine incorporation assays also showed a peripheral blood T-cell response to rhGM-CSF in at least 17% of the patients. The generation of rhGM-CSF–specific T-cell immune responses, elicited in this fashion, is an important observation because rhGM-CSF is being used as a vaccine adjuvant in various vaccine strategies. rhGM-CSF–specific immune responses may be incorrectly interpreted as antigen-specific immunity, particularly when local DTH responses to vaccination are the primary means of immunologic evaluation. We found no evidence of hematologic or infectious complications as a result of the development of rhGM-CSF–specific immune responses.


1990 ◽  
Vol 10 (3) ◽  
pp. 1281-1286 ◽  
Author(s):  
R Schreck ◽  
P A Baeuerle

The expression of the gene encoding the granulocyte-macrophage colony-stimulating factor (GM-CSF) is induced upon activation of T cells with phytohemagglutinin and active phorbolester and upon expression of tax1, a transactivating protein of the human T-cell leukemia virus type I. The same agents induce transcription from the interleukin-2 receptor alpha-chain and interleukin-2 genes, depending on promoter elements that bind the inducible transcription factor NF-kappa B (or an NF-kappa B-like factor). We therefore tested the possibility that the GM-CSF gene is also regulated by a cognate motif for the NF-kappa B transcription factor. A recent functional analysis by Miyatake et al. (S. Miyatake, M. Seiki, M. Yoshida, and K. Arai, Mol. Cell. Biol. 8:5581-5587, 1988) described a short promoter region in the GM-CSF gene that conferred strong inducibility by T-cell-activating signals and tax1, but no NF-kappa B-binding motifs were identified. Using electrophoretic mobility shift assays, we showed binding of purified human NF-kappa B and of the NF-kappa B activated in Jurkat T cells to an oligonucleotide comprising the GM-CSF promoter element responsible for mediating responsiveness to T-cell-activating signals and tax1. As shown by a methylation interference analysis and oligonucleotide competition experiments, purified NF-kappa B binds at positions -82 to -91 (GGGAACTACC) of the GM-CSF promoter sequence with an affinity similar to that with which it binds to the biologically functional kappa B motif in the beta interferon promoter (GGGAAATTCC). Two kappa B-like motifs at positions -98 to -108 of the GM-CSF promoter were also recognized but with much lower affinities. Our data provide strong evidence that the expression of the GM-CSF gene following T-cell activation is controlled by binding of the NF-kappa B transcription factor to a high-affinity binding site in the GM-CSF promoter.


Blood ◽  
1988 ◽  
Vol 72 (4) ◽  
pp. 1329-1332 ◽  
Author(s):  
DC Kaufman ◽  
MR Baer ◽  
XZ Gao ◽  
ZQ Wang ◽  
HD Preisler

Expression of the granulocyte-macrophage colony-stimulating factor (GM- CSF) gene in acute myelocytic leukemia (AML) was assayed by Northern blot analysis. GM-CSF messenger RNA (mRNA) was detected in the freshly obtained mononuclear cells of only one of 48 cases of AML, in contrast with recent reports that GM-CSF mRNA might be detected in half of the cases of AML when RNA is prepared from T-cell- and monocyte-depleted leukemic cells. We did find, however, that expression of the GM-CSF gene was detectable in five of ten cases after in vitro T-cell and monocyte depletion steps. Additional studies suggest that expression of GM-CSF in the bone marrow of the one positive case, rather than being autonomous, was under exogenous control, possibly by a paracrine factor secreted by marrow stromal cells. These studies emphasize the potential for altering in vivo patterns of gene expression by in vitro cell manipulation.


Blood ◽  
1994 ◽  
Vol 84 (12) ◽  
pp. 4078-4087 ◽  
Author(s):  
P Ragnhammar ◽  
HJ Friesen ◽  
JE Frodin ◽  
AK Lefvert ◽  
M Hassan ◽  
...  

The pharmacokinetics of recombinant human granulocyte-macrophage colony- stimulating factor (rhGM-CSF), induction of anti-GM-CSF antibodies, and clinical effects related to the induction of the antibodies were analyzed in patients with metastatic colorectal carcinoma (CRC) who were not on chemotherapy (n = 20, nonimmunocompromised patients). rhGM- CSF (250 micrograms/m2/d; Escherichia coli-derived) was administered subcutaneously for 10 days every month for 4 months. Eight patients with multiple myeloma (MM) on intensive chemotherapy followed by rhGM- CSF treatment were also included (immunocompromised patients). After a single injection of GM-CSF at the first cycle in CRC patients, the maximum calculated concentration (Cmax) was 5.24 +/- 0.56 ng/mL; the half life (T1/2) was 2.91 +/- 0.8 hours; and the area under the concentration curve (AUC) was 30.86 +/- 6.03 hours x ng/mL (mean +/- SE). No anti-GM-CSF antibodies were detected. During the subsequent cycles, 95% of the CRC patients developed anti-GM-CSF IgG antibodies, which significantly altered the pharmacokinetics of rhGM-CSF at the third and fourth cycles with decreased Cmax (2.87 +/- 0.57 ng/mL; P < .05), T1/2 (1.57 +/- 0.2 hours; P < .05), and AUC (14.90 +/- 4.10 hours x ng/mL; P < .005). The presence of anti-GM-CSF antibodies significantly reduced the GM-CSF-induced enhancement of granulocytes, and there was a clear tendency for a decreased increment of monocytes. Antibodies diminished systemic side effects of rhGM-CSF. Only 1 of 8 MM patients showed a very low anti-GM-CSF antibody titer after GM-CSF therapy, as shown by enzyme-linked immunosorbent assay and Western blot. Therefore, in nonimmunocompromised patients, exogenous nonglycosylated GM-CSF induced an anti-GM-CSF IgG antibody response in practically all patients, which seemed to be of clinical significance. In immunocompromised patients, virtually no significant antibody response was shown.


Blood ◽  
1994 ◽  
Vol 83 (3) ◽  
pp. 713-723
Author(s):  
AM Stewart-Akers ◽  
JS Cairns ◽  
DJ Tweardy ◽  
SA McCarthy

The effects of granulocyte-macrophage colony-stimulating factor (GM- CSF) are not confined to cells of the myeloid lineage. GM-CSF has been shown to have effects on mature T cells and both mature and immature T- cell lines. We therefore examined the GM-CSF responsiveness of murine thymocytes to investigate whether GM-CSF also affected normal immature T lymphocytes. The studies presented here indicate that GM-CSF augments accessory cell (AC)-dependent T-cell receptor (TCR)-mediated proliferation of unseparated thymocyte populations. To identify the GM- CSF responsive cell type, thymic AC and T cells were examined for GM- CSF responsiveness. We found that GM-CSF augmentation of TCR-induced thymocyte proliferation appears to be mediated via augmentation of AC function, and not via direct effects on mature single-positive (SP) thymocytes. Enriched double-negative (DN) thymocytes were also tested for GM-CSF responsiveness. GM-CSF induced the proliferation of adult and fetal DN thymocytes in an AC-independent and TCR-independent single- cell assay. Thus, in contrast to the SP thymocytes, a DN thymocyte population was directly responsive to GM-CSF. GM-CSF therefore may play a direct role in the expansion of DN thymocytes and an indirect role in the expansion of SP thymocytes.


Blood ◽  
1996 ◽  
Vol 87 (9) ◽  
pp. 3694-3703 ◽  
Author(s):  
SD Nimer ◽  
W Zhang ◽  
K Kwan ◽  
Y Whang ◽  
J Zhang ◽  
...  

Both copies of a repeated sequence CATT(A/T), located between bp -53 and -39 in the upstream region of the human GM-CSF gene, are required for mitogen-inducible promoter activity in T lymphocytes. However, the proteins that recognize this region of the granulocyte-macrophage colony-stimulating factor (GM-CSF) promoter, and are responsible for its transcriptional regulatory activity, have not been clearly identified. Using transient transfection assays, we demonstrate that a 19-bp oligonucleotide containing the CATT(A/T) repeats has strong constitutive enhancer activity in both T cell and non-T-cell lines, even though GM-CSF is not normally constitutively expressed by these cells. A 12-bp oligonucleotide, containing only the sequence CATTAATCATTT, lacks enhancer activity indicating that the nucleotides surrounding these sequences are critical for this enhancer activity. The sequence TTTCCT, which can bind members of the ets family of transcription factors, is located just 3′ of these CATT(A/T) repeats, and mutagenesis of the CCT sequence abolishes (1) the constitutive (and mitogen inducible) enhancer activity of the 19-bp GM-CSF sequences, (2) the responsiveness to transactivation by ets-1, and (3) the ability to specifically bind ets-1 and elf-1 in electrophoretic mobility shift assays (EMSA). We demonstrate that although T cells contain nuclear proteins capable of independently recognizing the ets binding site and the CATT(A/T) repeats in EMSAs, both of these regulatory elements are required for enhancer function. The strong constitutive activity of this 19-bp region suggests that negative regulation of the GM-CSF promoter is critical for the restricted expression pattern of GM-CSF mRNA.


1993 ◽  
Vol 13 (12) ◽  
pp. 7399-7407
Author(s):  
E S Masuda ◽  
H Tokumitsu ◽  
A Tsuboi ◽  
J Shlomai ◽  
P Hung ◽  
...  

Expression of the granulocyte-macrophage colony-stimulating factor (GM-CSF) gene in T cells is activated by the combination of phorbol ester (phorbol myristate acetate) and calcium ionophore (A23187), which mimic antigen stimulation through the T-cell receptor. We have previously shown that a fragment containing bp -95 to +27 of the mouse GM-CSF promoter can confer inducibility to reporter genes in the human Jurkat T-cell line. Here we use an in vitro transcription system to demonstrate that a cis-acting element (positions -54 to -40), referred to as CLE0, is a target for the induction signals. We observed induction with templates containing intact CLE0 but not with templates with deleted or mutated CLE0. We also observed that two distinct signals were required for the stimulation through CLE0, since only extracts from cells treated with both phorbol myristate acetate and A23187 supported optimal induction. Stimulation probably was mediated by CLE0-binding proteins because depletion of these proteins specifically reduced GM-CSF transcription. One of the binding factors possessed biochemical and immunological features identical to those of the transcription factor AP1. Another factor resembled the T-cell-specific factor NFAT. The characteristics of these two factors are consistent with their involvement in GM-CSF induction. The presence of CLE0-like elements in the promoters of interleukin-3 (IL-3), IL-4, IL-5, GM-CSF, and NFAT sites in the IL-2 promoter suggests that the factors we detected, or related factors that recognize these sites, may account for the coordinate induction of these genes during T-cell activation.


Sign in / Sign up

Export Citation Format

Share Document