A naturally occurring mutation near the amino terminus of αIIb defines a new region involved in ligand binding to αIIbβ3

Blood ◽  
2000 ◽  
Vol 95 (1) ◽  
pp. 180-188 ◽  
Author(s):  
Ramesh B. Basani ◽  
Deborah L. French ◽  
Gaston Vilaire ◽  
Deborah L. Brown ◽  
Fangping Chen ◽  
...  

Abstract Decreased expression of functional IIbβ3 complexes on the platelet surface produces Glanzmann thrombasthenia. We have identified mutations of IIbP145 in 3 ethnically distinct families affected by Glanzmann thrombasthenia. Affected Mennonite and Dutch patients were homozygous and doubly heterozygous, respectively, for a P145A substitution, whereas a Chinese patient was doubly heterozygous for a P145L substitution. The mutations affect expression levels of surface IIbβ3 receptors on their platelets, which was confirmed by co-transfection of IIbP145A and β3 cDNA constructs in COS-1 cells. Each mutation also impaired the ability of IIbβ3 on affected platelets to interact with ligands. Moreover, when IIbP145A and β3 were stably coexpressed in Chinese hamster ovary cells, IIbβ3 was readily detected on the cell surface, but the cells were unable to adhere to immobilized fibrinogen or to bind soluble fluorescein isothiocyanate–fibrinogen after IIbβ3 activation by the activating monoclonal antibody PT25-2. Nonetheless, incubating affected platelets with the peptide LSARLAF, which binds to IIb, induced PF4 secretion, indicating that the mutant IIbβ3 retained the ability to mediate outside-in signaling. These studies indicate that mutations involving IIbP145 impair surface expression of IIbβ3 and that the IIbP145A mutation abrogates ligand binding to the activated integrin. A comparative analysis of other IIb mutations with a similar phenotype suggests that these mutations may cluster into a single region on the surface of the IIb and may define a domain influencing ligand binding. (Blood. 2000;95:180188)

Blood ◽  
2000 ◽  
Vol 95 (1) ◽  
pp. 180-188 ◽  
Author(s):  
Ramesh B. Basani ◽  
Deborah L. French ◽  
Gaston Vilaire ◽  
Deborah L. Brown ◽  
Fangping Chen ◽  
...  

Decreased expression of functional IIbβ3 complexes on the platelet surface produces Glanzmann thrombasthenia. We have identified mutations of IIbP145 in 3 ethnically distinct families affected by Glanzmann thrombasthenia. Affected Mennonite and Dutch patients were homozygous and doubly heterozygous, respectively, for a P145A substitution, whereas a Chinese patient was doubly heterozygous for a P145L substitution. The mutations affect expression levels of surface IIbβ3 receptors on their platelets, which was confirmed by co-transfection of IIbP145A and β3 cDNA constructs in COS-1 cells. Each mutation also impaired the ability of IIbβ3 on affected platelets to interact with ligands. Moreover, when IIbP145A and β3 were stably coexpressed in Chinese hamster ovary cells, IIbβ3 was readily detected on the cell surface, but the cells were unable to adhere to immobilized fibrinogen or to bind soluble fluorescein isothiocyanate–fibrinogen after IIbβ3 activation by the activating monoclonal antibody PT25-2. Nonetheless, incubating affected platelets with the peptide LSARLAF, which binds to IIb, induced PF4 secretion, indicating that the mutant IIbβ3 retained the ability to mediate outside-in signaling. These studies indicate that mutations involving IIbP145 impair surface expression of IIbβ3 and that the IIbP145A mutation abrogates ligand binding to the activated integrin. A comparative analysis of other IIb mutations with a similar phenotype suggests that these mutations may cluster into a single region on the surface of the IIb and may define a domain influencing ligand binding. (Blood. 2000;95:180188)


1998 ◽  
Vol 275 (5) ◽  
pp. C1239-C1246 ◽  
Author(s):  
Milagros Ferrer ◽  
Matilde S. Ayuso ◽  
Nora Butta ◽  
Roberto Parrilla ◽  
Consuelo González-Manchón

The platelet GPIIb-GPIIIa heterodimer (integrin αIIbβ3) binds fibrinogen with high affinity in response to activation by agonists, leading to platelet aggregation and formation of a hemostatic plug. The326GRV motif in GPIIb is highly conserved in the α-subunit of other integrins, suggesting that it might play an important functional role. Moreover, Arg327→His substitution in GPIIb has been associated with defective platelet surface expression of GPIIb-IIIa and thrombasthenic phenotype. This work aimed at elucidating whether the absence of Arg327or its substitution by His was responsible for the impaired surface expression of GPIIb-IIIa complexes. Transfection of cDNA encoding [Ala327]GPIIb, [Gln327]GPIIb, or [Phe327]GPIIb into Chinese hamster ovary cells inherently expressing GPIIIa permitted surface exposure of GPIIb-IIIa complexes, whereas [Glu327]GPIIb did not. These observations indicate that it is not the loss of [Arg327]GPIIb but the presence of His327or a negatively charged residue like Glu at position 327 of GPIIb that prevents the surface exposure of GPIIb-IIIa heterodimers. In contrast, changing Gln344, the homologue to Arg327in the α-subunit of the vitronectin receptor, to His did not prevent the surface expression of αv-GPIIIa complexes. Thus the conformational constraint imposed by His327seems to be rather specific for the heterodimerization and/or processing of GPIIb-IIIa complexes.


Blood ◽  
2000 ◽  
Vol 95 (3) ◽  
pp. 1069-1077 ◽  
Author(s):  
Shanmugam Nagarajan ◽  
Kala Venkiteswaran ◽  
Michael Anderson ◽  
Umar Sayed ◽  
Cheng Zhu ◽  
...  

Neutrophils express 2 low-affinity FcγR, FcγRIIIB (CD16B), and FcγRIIA (CD32A). CD16B is a glycosyl-phosphatidyl inositol-anchored molecule, whereas CD32A is a polypeptide-anchored molecule. These 2 receptors also differ in their signaling. The biological significance of coexpression of 2 FcγRs with distinct membrane anchors and signaling capacities is not clearly understood. Using neutrophils from a CD16B-deficient donor and normal neutrophils treated with anti-CD16 monoclonal antibodies, the authors demonstrated that affinity modulation of CD32A is one of the mechanisms by which neutrophils regulate their FcγR-dependent functions. Neutrophils isolated from a CD16B− donor rosetted poorly with sheep erythrocytes opsonized with rabbit IgG (EA) (12% ± 2% versus 80% ± 6% for control) and were unable to mediate immunophagocytosis. However, activation of CD16B−neutrophils with fMLP, a bacterial chemotactic peptide, increased the CD32A-dependent EA rosetting to 58%. The CD32A-dependent rosetting of fMLP-activated normal neutrophils also increased nearly 5-fold, but there was no increase in CD32A expression. The CD32A-dependent immune complex (IC) binding was also increased in activated neutrophils. This affinity regulation was not observed with CD32A expressed on Chinese hamster ovary cells. These results suggest that in resting neutrophils CD32A is in a low-affinity state and that these cells primarily engage CD16B for IC binding. However, once the neutrophils are activated, the CD32A is converted to a high-affinity state that leads to CD32A-dependent ligand binding and signaling. These results suggest that neutrophils adopt a novel strategy to engage the 2 different FcγR selectively during physiologic and pathologic conditions to carry out their functions efficiently.


2001 ◽  
Vol 358 (2) ◽  
pp. 295-303 ◽  
Author(s):  
Philippe ULSEMER ◽  
Catherine STRASSEL ◽  
Marie-Jeanne BAAS ◽  
Jean SALAMERO ◽  
Sylvette CHASSEROT-GOLAZ ◽  
...  

The multisubunit leucine-rich glycoprotein (GP) Ib–IX–V complex mediates von Willebrand factor-dependent platelet adhesion at sites of blood-vessel injury. Molecular defects of this receptor are reported to cause the Bernard–Soulier haemorrhagic disorder. To gain insight into the mechanisms controlling expression of normal and defective receptors, we performed pulse–chase metabolic studies and detailed analysis of intracellular processing in GPIb-IX-transfected Chinese-hamster ovary cells. In the native complex, after early subunit association, sugars N-linked to the three subunits are trimmed and sialylated in the Golgi compartment and GPIbα undergoes extensive O-glycosylation. Surface biotinylation during chase demonstrated that only fully processed complexes reach the cell surface. Tunicamycin treatment revealed that early N-glycosylation is not required for O-glycosylation of GPIbα and surface expression of the complex. Biosynthetic studies were then performed on a Bernard–Soulier variant based on previous description of abnormal GPIbα size and decreased surface expression. The mutant complex associated normally, but displayed defective processing of its N-linked sugars and abnormal O-glycosylation of GPIbα. Confocal immunofluorescence microscopy revealed that the mutant complexes could reach the cell surface but also accumulated intracellularly, while use of compartment specific markers showed strong co-localization in the endoplasmic reticulum (ER) and ER-to-Golgi intermediate compartments (‘ERGIC’) and only slight labelling of the cis-Golgi. Blockade before the Golgi was confirmed by brefeldin A treatment, which restored O-glycosylation and processing of N-linked sugars. The present study has shown that transfer from the ER to the Golgi represents an important step for controlling post-translational processing and surface expression of normal GPIb-IX-V complex.


Blood ◽  
2000 ◽  
Vol 96 (8) ◽  
pp. 2808-2813 ◽  
Author(s):  
Shengdian Wang ◽  
Gefeng Zhu ◽  
Andrei I. Chapoval ◽  
Haidong Dong ◽  
Koji Tamada ◽  
...  

Abstract This report describes a new human B7-like gene designatedB7-H2. Cell surface expression of B7-H2 protein is detected in monocyte-derived immature dendritic cells. Soluble B7-H2 and immunoglobulin (Ig) fusion protein, B7-H2Ig, binds activated but not resting T cells and the binding is abrogated by inducible costimulator Ig (ICOSIg), but not CTLA4Ig. In addition, ICOSIg stains Chinese hamster ovary cells transfected with B7-H2 gene. By suboptimal cross-linking of CD3, costimulation of T-cell proliferation by B7-H2Ig is dose-dependent and correlates with secretion of interleukin (IL)-2, whereas optimal CD3 ligation preferentially stimulates IL-10 production. The results indicate that B7-H2 is a putative ligand for the ICOS T-cell molecule.


1995 ◽  
Vol 182 (2) ◽  
pp. 419-429 ◽  
Author(s):  
S Katoh ◽  
Z Zheng ◽  
K Oritani ◽  
T Shimozato ◽  
P W Kincade

Although CD44 is expressed on a wide variety of cell types, few of them use it to recognize the ligand hyaluronan (HA). A glycosylation-defective clone of Chinese hamster ovary cells (Lec 8) bound HA, demonstrating that complete processing of glycoproteins with addition of a full complement of sialic acid is not required. On the contrary, subsequent findings revealed that complex sugars on CD44 can actually inhibit ligand recognition. Two subclones of wild-type Chinese hamster ovary cells with similar amounts of surface CD44 were isolated on the basis of HA binding and found to differ with respect to CD44 size as well as staining with fluorescent lectins. Treatment of the nonbinding clone with tunicamycin reduced the size of the protein and allowed the cells to recognize HA via CD44. This function was also induced by treatment with deglycosylating enzymes (either a mixture of endoglycosidase F and N-glycosidase F or neuraminidase alone). A possible role for glycosylation in regulation of adhesion was then sought with a series of normal and transformed murine cells. Disruption of glycosylation or treatment with deglycosylating enzymes did not induce ligand binding in an interleukin 7-dependent pre-B cell line, and splenic B cells also appeared to be in an inactive state. Some normal B cells acquired the ability to recognize HA after stimulation with lipopolysaccharide or interleukin 5 and had distinctive surface characteristics (loss of immunoglobulin D and acquisition of CD43). An additional subset of activated cells might have been in a transitional state, because the cells bound ligand after neuraminidase treatment. The ligand-binding ability of a purified CD44-immunoglobulin fusion protein dramatically increased after neuraminidase treatment. Thus, differential glycosylation of this molecule is sufficient to influence its recognition function. Cell adhesion involving HA can be regulated by multiple mechanisms, one of which involves variable glycosylation of CD44.


Blood ◽  
2000 ◽  
Vol 96 (8) ◽  
pp. 2808-2813 ◽  
Author(s):  
Shengdian Wang ◽  
Gefeng Zhu ◽  
Andrei I. Chapoval ◽  
Haidong Dong ◽  
Koji Tamada ◽  
...  

This report describes a new human B7-like gene designatedB7-H2. Cell surface expression of B7-H2 protein is detected in monocyte-derived immature dendritic cells. Soluble B7-H2 and immunoglobulin (Ig) fusion protein, B7-H2Ig, binds activated but not resting T cells and the binding is abrogated by inducible costimulator Ig (ICOSIg), but not CTLA4Ig. In addition, ICOSIg stains Chinese hamster ovary cells transfected with B7-H2 gene. By suboptimal cross-linking of CD3, costimulation of T-cell proliferation by B7-H2Ig is dose-dependent and correlates with secretion of interleukin (IL)-2, whereas optimal CD3 ligation preferentially stimulates IL-10 production. The results indicate that B7-H2 is a putative ligand for the ICOS T-cell molecule.


Sign in / Sign up

Export Citation Format

Share Document