α-Thalassemia resulting from a negative chromosomal position effect

Blood ◽  
2000 ◽  
Vol 96 (3) ◽  
pp. 800-807 ◽  
Author(s):  
Virginia M. Barbour ◽  
Cristina Tufarelli ◽  
Jacqueline A. Sharpe ◽  
Zoe E. Smith ◽  
Helena Ayyub ◽  
...  

Abstract To date, all of the chromosomal deletions that cause -thalassemia remove the structural  genes and/or their regulatory element (HS –40). A unique deletion occurs in a single family that juxtaposes a region that normally lies approximately 18-kilobase downstream of the human  cluster, next to a structurally normal -globin gene, and silences its expression. During development, the CpG island associated with the -globin promoter in the rearranged chromosome becomes densely methylated and insensitive to endonucleases, demonstrating that the normal chromatin structure around the -globin gene is perturbed by this mutation and that the gene is inactivated by a negative chromosomal position effect. These findings highlight the importance of the chromosomal environment in regulating globin gene expression.

Blood ◽  
2000 ◽  
Vol 96 (3) ◽  
pp. 800-807
Author(s):  
Virginia M. Barbour ◽  
Cristina Tufarelli ◽  
Jacqueline A. Sharpe ◽  
Zoe E. Smith ◽  
Helena Ayyub ◽  
...  

To date, all of the chromosomal deletions that cause -thalassemia remove the structural  genes and/or their regulatory element (HS –40). A unique deletion occurs in a single family that juxtaposes a region that normally lies approximately 18-kilobase downstream of the human  cluster, next to a structurally normal -globin gene, and silences its expression. During development, the CpG island associated with the -globin promoter in the rearranged chromosome becomes densely methylated and insensitive to endonucleases, demonstrating that the normal chromatin structure around the -globin gene is perturbed by this mutation and that the gene is inactivated by a negative chromosomal position effect. These findings highlight the importance of the chromosomal environment in regulating globin gene expression.


Blood ◽  
1995 ◽  
Vol 86 (3) ◽  
pp. 1202-1211 ◽  
Author(s):  
A Bernet ◽  
S Sabatier ◽  
DJ Picketts ◽  
R Ouazana ◽  
F Morle ◽  
...  

Abstract We have examined the role of the major positive upstream regulatory element of the human alpha-globin gene locus (HS-40) in its natural chromosomal context. Using homologous recombination, HS-40 was replaced by a neo marker gene in a mouse erythroleukemia hybrid cell line containing a single copy of human chromosome 16. In clones from which HS-40 had been deleted, human alpha-globin gene expression was severely reduced, although basal levels of alpha 1 and alpha 2-globin mRNA expression representing less than 3% of the level in control cell lines were detected. Deletion of the neo marker gene, by using FLP recombinase/FLP recombinase target system, proved that the phenotype observed was not caused by the regulatory elements of this marker gene. In the targeted clones, deletion of HS-40 apparently does not affect long-range or local chromatin structure at the alpha promoters. Therefore, these results indicate that, in the experimental system used, HS-40 behaves as a strong inducible enhancer of human alpha- globin gene expression.


1998 ◽  
Vol 18 (1) ◽  
pp. 102-109 ◽  
Author(s):  
Haruhiko Asano ◽  
George Stamatoyannopoulos

ABSTRACT Erythroid Krüppel-like factor (EKLF), an erythroid tissue-specific Krüppel-type zinc finger protein, binds to the β-globin gene CACCC box and is essential for β-globin gene expression. EKLF does not activate the γ gene, the CACCC sequence of which differs from that of the β gene. To test whether the CACCC box sequence difference is the primary determinant of the selective activation of the β gene by EKLF, the CACCC boxes of β and γ genes were swapped and the resulting promoter activities were assayed by transient transfections in CV-1 cells. EKLF activated the β promoter carrying a γ CACCC box at a level comparable to that at which it activated the wild-type β promoter, whereas EKLF failed to activate a γ promoter carrying the β CACCC box, despite the presence of the optimal EKLF binding site. Similar results were obtained in K562 cells. The possibility that overexpressed EKLF superactivated the β promoter carrying the γ CACCC box, or that EKLF activated the mutated β promoter through the intact distal CACCC box, was excluded. To test whether the position of the CACCC box in the β or γ promoter determined EKLF specificity, the proximal β CACCC box sequence was created at the position of the β promoter (−140) which corresponds to the position of the CACCC box on the γ promoter. Similarly, the β CACCC box was created in the position of the γ promoter (−90) corresponding to the position of the CACCC box in the β promoter. EKLF retained weak activation potential on the β−140CAC promoter, whereas EKLF failed to activate the γ−90βCAC promoter even though that promoter contained an optimal EKLF binding site at the optimal position. Taken together, our findings indicate that the specificity of the activation of the β promoter by EKLF is determined by the overall structure of the β promoter rather than solely by the sequence of the β gene CACCC box.


Blood ◽  
1997 ◽  
Vol 90 (1) ◽  
pp. 421-427 ◽  
Author(s):  
Delia C. Tang ◽  
David Ebb ◽  
Ross C. Hardison ◽  
Griffin P. Rodgers

Abstract Hemoglobin A2 (HbA2 ), which contains δ-globin as its non–α-globin, represents a minor fraction of the Hb found in normal adults. It has been shown recently that HbA2 is as potent as HbF in inhibiting intracellular deoxy-HbS polymerization, and its expression is therefore relevant to sickle cell disease treatment strategies. To elucidate the mechanisms responsible for the low-level expression of the δ-globin gene in adult erythroid cells, we first compared promoter sequences and found that the δ-globin gene differs from the β-globin gene in the absence of an erythroid Krüppel-like factor (EKLF ) binding site, the alteration of the CCAAT box to CCAAC, and the presence of a GATA-1 binding site. Second, serial deletions of the human δ-globin promoter sequence fused to a luciferase (LUC) reporter gene were transfected into K562 cells. We identified both positive and negative regulatory regions in the 5′ flanking sequence. Furthermore, a plasmid containing a single base pair (bp) mutation in the CCAAC box of the δ promoter, restoring the CCAAT box, caused a 5.6-fold and 2.4-fold (P < .05) increase of LUC activity in transfected K562 cells and MEL cells, respectively, in comparison to the wild-type δ promoter. A set of substitutions that create an EKLF binding site centered at −85 bp increased the expression by 26.8-fold and 6.5-fold (P < .05) in K562 and MEL cells, respectively. These results clearly demonstrate that the restoration of either an EKLF binding site or the CCAAT box can increase δ-globin gene expression, with potential future clinical benefit.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 525-525
Author(s):  
Janet Chin ◽  
Donald Lavelle ◽  
Bryan Roxas ◽  
Kestis Vaitkus ◽  
Maria Hankewych ◽  
...  

Abstract Understanding the mechanism responsible for the developmental regulation of the β-like globin genes would be important in the design of future pharmacologic therapies to increase fetal hemoglobin (HbF) in patients with sickle cell disease and β-thalassemia. The baboon is a valuable and relevant experimental animal model to study the regulation of globin gene expression because the structure of the β-globin gene complex and developmental pattern of globin gene expression are similar to human, and HbF levels are greatly increased following treatment of baboons with the DNA methyltransferase inhibitor Dacogen (5-aza-2′-deoxycytidine; DAC). To investigate the relationship between DNA methylation, chromatin structure and globin gene expression, the pattern of acetylated histone H3 (ac-H3) and H4 (ac-H4) within the β-globin gene complex was compared in purified erythroblasts from baboon fetal liver (FL; n=2) and bone marrow (ABM; n=2) of adult baboons pre and post DAC treatment. HbF increased to high levels (67.8%, 61.9%) in respective animals and methylation of 18 CpG sites within the ε- and γ globin genes was reduced >50% following DAC treatment. Enrichment of ac-H3 and ac-H4 throughout the β-globin gene complex was measured by chromatin immunoprecipitation (ChIP) followed by real time PCR. In FL, equivalent levels of ac-H3 and ac-H4 were observed near the ε-globin and γ-globin promoters that were 3 fold higher than near the Aγ-enhancer and pseudo-β gene and 5–14 fold higher than near the β-globin promoter. In pretreatment ABM, levels of ac-H3 and ac-H4 near the β-globin promoter were 4–6 fold greater than near the γ-globin promoter, Aγ-enhancer, and pseudo-β gene and 10-15 fold higher than near the ε-globin promoter. The lowest levels of histone acetylation were observed in a 6kb subdomain within the γ-β intergenic region extending from the duplicated Alu sequence to 3′ of the δ-globin gene. Following DAC treatment, histone acetylation of the ε-, γ-, and pseudo-β genes and Aγ-enhancer increased 4-10 fold, while histone acetylation of the β-globin gene remained unchanged. This resulted in equivalent levels of histone acetylation associated with the γ-globin gene, Aγ-enhancer, pseudo-β-, and β-globin genes that were 3 fold greater than with the ε-globin gene. The levels of histone acetylation within the 6 kb subdomain of the γ-β intergenic region remained low. Our results suggest that three subdomains of chromatin are present within the baboon β-globin gene complex. One subdomain that encompasses the ε-, γ-, and pseudo-β genes is characterized by high levels of histone acetylation in FL and low levels in ABM. DAC treatment increases histone acetylation within this region to levels observed near the β-globin gene. A second subdomain near the β-globin gene is characterized by high levels of histone acetylation in ABM and low levels in FL. Histone acetylation of the β-globin gene within this subdomain remains high following DAC. A third subdomain found within the γ-β intergenic region surrounding the duplicated Alu sequences is characterized by a low level of histone acetylation in both FL and ABM. The level of histone acetylation of this region remains low following DAC. We conclude that three chromatin subdomains within the β-globin gene complex are differentially sensitive to DAC-induced changes in histone acetylation.


1990 ◽  
Vol 10 (3) ◽  
pp. 1192-1198 ◽  
Author(s):  
R al-Shawi ◽  
J Kinnaird ◽  
J Burke ◽  
J O Bishop

Unusual aberrant expression of a foreign gene in a particular transgenic mouse line is often attributed to chromosomal position effect, although proof of this is lacking. An alternative explanation is that expression has been modified by the arrangement of multiple copies of the foreign gene at the insertion site or by mutation or gene rearrangement. We have distinguished between these explanations in the case of one particular transgenic line by recovering the aberrantly expressed foreign DNA and reintroducing it into the mouse genome to produce secondary transgenic mice. The expression pattern of the gene in the secondary transgenic mice was normal, showing that this case of aberrant expression is due to a chromosomal position effect.


Blood ◽  
1991 ◽  
Vol 78 (6) ◽  
pp. 1589-1595
Author(s):  
L Romao ◽  
L Osorio-Almeida ◽  
DR Higgs ◽  
J Lavinha ◽  
SA Liebhaber

We describe an alpha-thalassemia determinant in which alpha-globin expression is silenced by a deletion located 27 kb 5′ to the transcription start site of the alpha 2-globin gene. This alpha- thalassemic determinant, (alpha alpha)MM, is a member of a newly described group of thalassemic mutations resulting from deletion of locus-controlling sequences critical to globin gene expression.


1993 ◽  
Vol 13 (4) ◽  
pp. 2298-2308
Author(s):  
Q Zhang ◽  
P M Reddy ◽  
C Y Yu ◽  
C Bastiani ◽  
D Higgs ◽  
...  

We studied the functional interaction between human embryonic zeta 2 globin promoter and the alpha globin regulatory element (HS-40) located 40 kb upstream of the zeta 2 globin gene. It was shown by transient expression assay that HS-40 behaved as an authentic enhancer for high-level zeta 2 globin promoter activity in K562 cells, an erythroid cell line of embryonic and/or fetal origin. Although sequences located between -559 and -88 of the zeta 2 globin gene were dispensable for its expression on enhancerless plasmids, they were required for the HS-40 enhancer-mediated activity of the zeta 2 globin promoter. Site-directed mutagenesis demonstrated that this HS-40 enhancer-zeta 2 globin promoter interaction is mediated by the two GATA-1 factor binding motifs located at -230 and -104, respectively. The functional domains of HS-40 were also mapped. Bal 31 deletion mapping data suggested that one GATA-1 motif, one GT motif, and two NF-E2/AP1 motifs together formed the functional core of HS-40 in the erythroid-specific activation of the zeta 2 globin promoter. Site-directed mutagenesis further demonstrated that the enhancer function of one of the two NF-E2/AP1 motifs of HS-40 is mediated through its binding to NF-E2 but not AP1 transcription factor. Finally, we did genomic footprinting of the HS-40 enhancer region in K562 cells, adult nucleated erythroblasts, and different nonerythroid cells. All sequence motifs within the functional core of HS-40, as mapped by transient expression analysis, appeared to bind a nuclear factor(s) in living K562 cells but not in nonerythroid cells. On the other hand, only one of the apparently nonfunctional sequence motifs was bound with factors in vivo. In comparison to K562, nucleated erythroblasts from adult human bone marrow exhibited a similar but nonidentical pattern of nuclear factor binding in vivo at the HS-40 region. These data suggest that transcriptional activation of human embryonic zeta 2 globin gene and the fetal/adult alpha globin genes is mediated by erythroid cell-specific and developmental stage-specific nuclear factor-DNA complexes which form at the enhancer (HS-40) and the globin promoters.


Sign in / Sign up

Export Citation Format

Share Document