scholarly journals Accurate quantification of minimal residual disease at day 15, by real-time quantitative polymerase chain reaction identifies also patients with B-precursor acute lymphoblastic leukemia at high risk for relapse

Blood ◽  
2000 ◽  
Vol 96 (4) ◽  
pp. 1619-1620 ◽  
Author(s):  
Valerie de Haas ◽  
Willemÿn B. Breunis ◽  
Onno J. Verhagen ◽  
Henk van den Berg ◽  
C. Ellen van der Schoot
2016 ◽  
Vol 8 ◽  
pp. 2016024 ◽  
Author(s):  
Juliana Maria Camargos Rocha ◽  
Sandra Guerra Xavier ◽  
Marcelo Eduardo Lima Souza ◽  
Juliana Godoy Assumpção ◽  
Mitiko Murao ◽  
...  

Acute lymphoblastic leukemia (ALL) is the most common cancer in children. Current treatment strategies for childhood ALL result in long term remission for approximately 90% of patients. However, therapeutic response is worse among those who relapse. Several risk stratification approaches based on clinical and biological aspects have been proposed in order to intensify treatment in patients with high risk of relapse and reduce toxicity on those with greater probability of cure.The detection of residual leukemic cells (minimal residual disease, MRD) is the most important prognostic factor to identify high risk patients, allowing redefinition of chemotherapy. In the last decades, several standardized research protocols evaluated MRD using immunophenotyping by flow cytometry and/or real time quantitative polymerase chain reaction at different time points during treatment. Both methods are highly sensitive (10-3 a 10-5), but expensive, complex, and, because of that, require qualified staff and frequently are restricted to reference centers.The aim of this article was to review technical aspects of immunophenotyping by flow cytometry and real time quantitative polymerase chain reaction to evaluate MRD in ALL. 


Blood ◽  
1992 ◽  
Vol 79 (5) ◽  
pp. 1366-1370 ◽  
Author(s):  
K Miyamura ◽  
M Tanimoto ◽  
Y Morishima ◽  
K Horibe ◽  
K Yamamoto ◽  
...  

Abstract Minimal residual disease (MRD) in patients with Philadelphia chromosome- positive acute lymphoblastic leukemia (Ph1 ALL) who received allogeneic (n = 9) or autologous (n = 6) bone marrow transplantation (BMT) was evaluated by the polymerase chain reaction (PCR) for the bcr-abl transcript. Twelve patients received BMT at the time of hematologic and cytogenetic remission. However, MRD was detected in 8 of 10 patients evaluated. Seven patients, including three who had MRD before BMT, continue to have a disease-free survival 5 to 64 months after BMT. Twenty-one specimens obtained from these patients at various times after BMT did not show MRD. In three patients, MRD detected just before BMT seems to be eradicated by BMT protocol. The other eight patients developed cytogenetic or hematologic relapses 2 to 8 months after BMT. Seven of 14 samples from these patients demonstrated MRD, which preceded clinical relapse by 3 to 9 weeks. Thus, this technique for the detection of MRD appears to be useful for the more precise assessment of various antileukemia therapies and for early detection of leukemia recurrence.


Blood ◽  
1994 ◽  
Vol 83 (7) ◽  
pp. 1892-1902 ◽  
Author(s):  
H Cave ◽  
C Guidal ◽  
P Rohrlich ◽  
MH Delfau ◽  
A Broyart ◽  
...  

Abstract We have developed a strategy based on polymerase chain reaction (PCR) for detecting all possible gamma T-cell receptor (gamma TCR) rearrangements and the most common delta TCR rearrangements found in B- lineage and T-acute lymphoblastic leukemia (T-ALL). The segments amplified from blasts are then directly sequenced to derive clonospecific probes. From a series of 45 patients aged 1 to 15 years (42 B-lineage ALL, 3 T-ALL), 35 (83%) could be followed for minimal residual disease with at least one clonospecific probe. Detection of clonal markers using clonospecific probes routinely allowed the detection of 1 to 10 blasts out of 10(5) cells as determined by serial dilutions of the initial samples. Residual disease was quantitated by a competitive PCR assay based on the coamplification of an internal standard. Twenty children were prospectively followed for periods varying from 7 to 30 months. In most children, a progressive decrease of the tumor load was observed, and blasts became undetectable within 6 months after the initiation of treatment. A slower kinetics of decrease in tumor cells was found in three children. These three patients relapsed with blasts that continued to display the initial clonospecific markers. Three other children had a central nervous system relapse despite the absence of detectable medullary residual disease. The use of both delta and gamma TCR genes as clonal markers, as well as simplification in the methods to detect and quantify residual blasts reported here, will allow the study of the large number of patients required to determine the role of the detection of minimal residual disease by PCR in the follow-up of childhood ALL.


Sign in / Sign up

Export Citation Format

Share Document