Homozygous gene conversion in von Willebrand factor gene as a cause of type 3 von Willebrand disease and predisposition to inhibitor development

Blood ◽  
2001 ◽  
Vol 98 (1) ◽  
pp. 248-250 ◽  
Author(s):  
Gurcharan K. Surdhar ◽  
Mohammad S. Enayat ◽  
Sarah Lawson ◽  
Michael D. Williams ◽  
Frank G. H. Hill
1993 ◽  
Vol 69 (02) ◽  
pp. 173-176 ◽  
Author(s):  
Anna M Randi ◽  
Elisabetta Sacchi ◽  
Gian Carlo Castaman ◽  
Francesco Rodeghiero ◽  
Pier Mannuccio Mannucci

SummaryType I von Willebrand disease (vWD) Vicenza is a rare variant with autosomal dominant transmission, characterized by the presence of supranormal von Willebrand factor (vWF) multimers in plasma, similar to those normally found in endothelial cells and megakaryocytes. The patients have very low levels of plasma vWF contrasting with a mild bleeding tendency. The pathophysiology of this subtype is still unknown. The presence of supranormal multimers in the patients’ plasma could be due to a mutation in the vWF molecule which affects post-translational processing, or to a defect in the cells’ processing machinery, independent of the vWF molecule. In order to determne if type I vWD Vicenza is linked to the vWF gene, we studied six polymorphic systems identified within the vWF gene in two apparently unrelated families with type I vWD Vicenza. The results of this study indicate a linkage between vWF gene and the type I vWD Vicenza trait. This strongly suggests that type I vWD Vicenza is due to a mutation in one of the vWF alleles, which results in an abnormal vWF molecule that is processed to a lesser extent than normal vWF.


1994 ◽  
Vol 72 (02) ◽  
pp. 180-185 ◽  
Author(s):  
David J Mancuso ◽  
Elodee A Tuley ◽  
Ricardo Castillo ◽  
Norma de Bosch ◽  
Pler M Mannucci ◽  
...  

Summaryvon Willebrand factor gene deletions were characterized in four patients with severe type III von Willebrand disease and alloantibodies to von Willebrand factor. A PCR-based strategy was used to characterize the boundaries of the deletions. Identical 30 kb von Willebrand factor gene deletions which include exons 33 through 38 were identified in two siblings of one family by this method. A small 5 base pair insertion (CCTGG) was sequenced at the deletion breakpoint. PCR analysis was used to detect the deletion in three generations of the family, including two family members who are heterozygous for the deletion. In a second family, two type III vWD patients, who are distant cousins, share an -56 kb deletion of exons 22 through 43. The identification and characterization of large vWF gene deletions in these type III vWD patients provides further support for the association between large deletions in both von Willebrand factor alleles and the development of inhibitory alloantibodies.


2021 ◽  
Vol 47 (02) ◽  
pp. 192-200
Author(s):  
James S. O'Donnell

AbstractThe biological mechanisms involved in the pathogenesis of type 2 and type 3 von Willebrand disease (VWD) have been studied extensively. In contrast, although accounting for the majority of VWD cases, the pathobiology underlying partial quantitative VWD has remained somewhat elusive. However, important insights have been attained following several recent cohort studies that have investigated mechanisms in patients with type 1 VWD and low von Willebrand factor (VWF), respectively. These studies have demonstrated that reduced plasma VWF levels may result from either (1) decreased VWF biosynthesis and/or secretion in endothelial cells and (2) pathological increased VWF clearance. In addition, it has become clear that some patients with only mild to moderate reductions in plasma VWF levels in the 30 to 50 IU/dL range may have significant bleeding phenotypes. Importantly in these low VWF patients, bleeding risk fails to correlate with plasma VWF levels and inheritance is typically independent of the VWF gene. Although plasma VWF levels may increase to > 50 IU/dL with progressive aging or pregnancy in these subjects, emerging data suggest that this apparent normalization in VWF levels does not necessarily equate to a complete correction in bleeding phenotype in patients with partial quantitative VWD. In this review, these recent advances in our understanding of quantitative VWD pathogenesis are discussed. Furthermore, the translational implications of these emerging findings are considered, particularly with respect to designing personalized treatment plans for VWD patients undergoing elective procedures.


2021 ◽  
Author(s):  
Andrew Yee ◽  
Manhong Dai ◽  
Stacy E. Croteau ◽  
Jordan A. Shavit ◽  
Steven W. Pipe ◽  
...  

SummaryBackgroundCorrection of von Willebrand factor (VWF) deficiency with replacement products containing VWF can lead to the development of anti-VWF alloantibodies (i.e., VWF inhibitors) in patients with severe von Willebrand disease (VWD).ObjectiveLocate inhibitor-reactive regions within VWF using phage display.MethodsWe screened a phage library displaying random, overlapping fragments covering the full length VWF protein sequence for binding to a commercial anti-VWF antibody or to immunoglobulins from three type 3 VWD patients who developed VWF inhibitors in response to treatment with plasma-derived VWF. Immunoreactive phage clones were identified and quantified by next generation DNA sequencing (NGS).ResultsNGS markedly increased the number of phage analyzed for locating immunoreactive regions within VWF following a single round of selection and identified regions not recognized in previous reports using standard phage display methods. Extending this approach to characterize VWF inhibitors from three type 3 VWD patients (including two siblings homozygous for the same VWF gene deletion) revealed patterns of immunoreactivity distinct from the commercial antibody and between unrelated patients, though with notable areas of overlap. Alloantibody reactivity against the VWF propeptide is consistent with incomplete removal of the propeptide from plasma-derived VWF replacement products.ConclusionThese results demonstrate the utility of phage display and NGS to characterize diverse anti-VWF antibody reactivities.


Sign in / Sign up

Export Citation Format

Share Document