scholarly journals TLR7 ligation augments hematopoiesis in Rps14 (uS11) deficiency via paradoxical suppression of inflammatory signalling.

Author(s):  
Oscar A Peña ◽  
Alexandra Lubin ◽  
Catherine Hockings ◽  
Jasmine Rowell ◽  
Youngrock Jung ◽  
...  

Myelodysplastic syndrome (MDS) is a haematological malignancy characterised by blood cytopenias and predisposition to acute myeloid leukaemia (AML). Therapies for MDS are lacking, particularly those that impact the early stages of disease. We developed a model of MDS using zebrafish using knockout of Rps14, the primary mediator of the anaemia associated with del (5q) MDS. These mutant animals display dose- and age-dependent abnormalities in haematopoiesis, culminating in bone marrow failure with dysplastic features. We utilized rps14 knockdown to undertake an in vivo small molecule screen to identify compounds that ameliorate the MDS phenotype, identifying imiquimod, an agonist of TLR7 and TLR8. Imiquimod alleviates anaemia by promoting haematopoietic stem and progenitor cell expansion and erythroid differentiation, the mechanism of which is dependent on TLR7 ligation and Myd88. TLR7 activation in this setting paradoxically promoted an anti-inflammatory gene signature indicating crosstalk between pro-inflammatory pathways endogenous to Rps14 loss and NFkappaB pathway via TLR7. Finally, we show that in highly purified human bone marrow samples from anaemic patients, imiquimod leads to an increase in erythroid output from myelo-erythroid progenitors and common myeloid progenitors. Our findings have both specific implications for the development of targeted therapeutics for del (5q) MDS and wider significance identifying a potential role for TLR7 ligation in modifying anaemia.

2020 ◽  
Author(s):  
Oscar A Peña ◽  
Alexandra Lubin ◽  
Jasmine Rowell ◽  
Catherine Hockings ◽  
Youngrock Jung ◽  
...  

AbstractMyelodysplastic syndrome (MDS) is a haematological malignancy characterised by blood cytopenias and predisposition to acute myeloid leukaemia (AML). Therapies for MDS are lacking, particularly those that impact the early stages of disease. We developed a model of MDS using zebrafish using knockout of Rps14, the primary mediator of the anaemia associated with del (5q) MDS. These mutant animals display dose- and age-dependent abnormalities in haematopoiesis, culminating in bone marrow failure with dysplastic features. We utilized rps14 knockdown to undertake an in vivo small molecule screen to identify compounds that ameliorate the MDS phenotype, identifying imiquimod, an agonist of TLR7 and TLR8. Imiquimod alleviates anaemia by promoting haematopoietic stem and progenitor cell expansion and erythroid differentiation, the mechanism of which is dependent on TLR7 ligation. TLR7 activation in this setting paradoxically promoted an anti-inflammatory gene signature suggesting crosstalk between pro-inflammatory pathways endogenous to Rps14 loss and TLR7 pathway activation. Finally, we show that in highly purified human bone marrow samples from anaemic patients, imiquimod leads to an increase in erythroid output from myelo-erythroid progenitors and common myeloid progenitors. Our findings have both specific implications for the development of targeted therapeutics for del (5q) MDS and wider significance identifying a potential role for TLR7 ligation in modifying anaemia.


Blood ◽  
1984 ◽  
Vol 63 (6) ◽  
pp. 1376-1384 ◽  
Author(s):  
T Yokochi ◽  
M Brice ◽  
PS Rabinovitch ◽  
T Papayannopoulou ◽  
G Stamatoyannopoulos

Two new cell surface antigens specific for the erythroid lineage were defined with cytotoxic IgM monoclonal antibodies (McAb) (EP-1; EP-2) that were produced using BFU-E-derived colonies as immunogens. These two antigens are expressed on in vivo and in vitro derived adult and fetal erythroblasts, but not on erythrocytes. They are not detectable on resting lymphocytes, concanavalin-A (Con-A) activated lymphoblasts, granulocytes, and monocytes or granulocytic cells or macrophages present in peripheral blood or harvested from CFU-GM cultures. Cell line and tissue distributions distinguish McAb EP-1 and EP-2 from all previously described monoclonal antibodies. McAb EP-1 (for erythropoietic antigen-1) inhibits the formation of BFU-E and CFU-E, but not CFU-GM, colonies in complement-dependent cytotoxicity assays. By cell sorting analysis, about 90% of erythroid progenitors (CFU-E, BFU-E) were recovered in the antigen-positive fraction. Seven percent of the cells in this fraction were progenitors (versus 0.1% in the negative fraction). The expression of EP-1 antigen is greatly enhanced in K562 cells, using inducers of hemoglobin synthesis. McAb EP-2 fails to inhibit BFU-E and CFU-E colony formation in complement-dependent cytotoxicity assays. EP-2 antigen is predominantly expressed on in vitro derived immature erythroblasts, and it is weakly expressed on mature erythroblasts. The findings with McAb EP-1 provide evidence that erythroid progenitors (BFU-E and CFU-E) express determinants that fail to be expressed on other progenitor cells and hence appear to be unique to the erythroid lineage. McAb EP-1 and EP-2 are potentially useful for studies of erythroid differentiation and progenitor cell isolation.


Blood ◽  
2000 ◽  
Vol 95 (2) ◽  
pp. 700-704 ◽  
Author(s):  
Kimberly A. Gush ◽  
Kai-Ling Fu ◽  
Markus Grompe ◽  
Christopher E. Walsh

Fanconi anemia (FA) is a genetic disorder characterized by bone marrow failure, congenital anomalies, and a predisposition to malignancy. FA cells demonstrate hypersensitivity to DNA cross-linking agents, such as mitomycin C (MMC). Mice with a targeted disruption of the FANCC gene (fancc −/− nullizygous mice) exhibit many of the characteristic features of FA and provide a valuable tool for testing novel therapeutic strategies. We have exploited the inherent hypersensitivity offancc −/− hematopoietic cells to assay for phenotypic correction following transfer of the FANCC complementary DNA (cDNA) into bone marrow cells. Murine fancc −/− bone marrow cells were transduced with the use of retrovirus carrying the humanfancc cDNA and injected into lethally irradiated recipients. Mitomycin C (MMC) dosing, known to induce pancytopenia, was used to challenge the transplanted animals. Phenotypic correction was determined by assessment of peripheral blood counts. Mice that received cells transduced with virus carrying the wild-type gene maintained normal blood counts following MMC administration. All nullizygous control animals receiving MMC exhibited pancytopenia shortly before death. Clonogenic assay and polymerase chain reaction analysis confirmed gene transfer of progenitor cells. These results indicate that selective pressure promotes in vivo enrichment offancc-transduced hematopoietic stem/progenitor cells. In addition, MMC resistance coupled with detection of the transgene in secondary recipients suggests transduction and phenotypic correction of long-term repopulating stem cells.


Blood ◽  
1982 ◽  
Vol 59 (3) ◽  
pp. 646-651 ◽  
Author(s):  
D Brookoff ◽  
L Maggio-Price ◽  
S Bernstein ◽  
L Weiss

Abstract In order to characterize chronically accelerated erythropoiesis, we studied the ultrastructure of bone marrow and spleen of ha/ha and sph/sph mice, two mutants with profound hemolytic anemia secondary to deficiency of the erythrocyte membrane protein spectrin. The marrows and spleens of both varieties were extremely erythropoietic and were without histological abnormalities directly related to spectrin deficiency. Erythropoiesis was consistently associated with distinctive, dark branched cells which constituted large proportions of the stroma of the mutant spleens and marrow. These dark cells were not present in untreated and acutely bled controls. Plasma clot assays for erythroid progenitors revealed that CFU-E concentrations in the mutant marrows were significantly increased over those in untreated controls while BFU-E concentrations were approximately half. In addition, mutant CFU-E often gave rise to abnormal appearing colonies. Spectrin, though crucial to erythrocyte function is probably not important to the process of erythroid differentiation and maturation. The status of erythroid precursors in the marrows of the spectrin deficient mice is similar to that of mice subjected to an acute bleed. The divergent changes in CFU-E and BFU-E may indicate that these two cells play different roles in accelerated erythropoiesis. The dark cells that we describe are similar to stromal cells observed in models of the early stages of erythropoiesis.


Blood ◽  
1984 ◽  
Vol 63 (6) ◽  
pp. 1376-1384 ◽  
Author(s):  
T Yokochi ◽  
M Brice ◽  
PS Rabinovitch ◽  
T Papayannopoulou ◽  
G Stamatoyannopoulos

Abstract Two new cell surface antigens specific for the erythroid lineage were defined with cytotoxic IgM monoclonal antibodies (McAb) (EP-1; EP-2) that were produced using BFU-E-derived colonies as immunogens. These two antigens are expressed on in vivo and in vitro derived adult and fetal erythroblasts, but not on erythrocytes. They are not detectable on resting lymphocytes, concanavalin-A (Con-A) activated lymphoblasts, granulocytes, and monocytes or granulocytic cells or macrophages present in peripheral blood or harvested from CFU-GM cultures. Cell line and tissue distributions distinguish McAb EP-1 and EP-2 from all previously described monoclonal antibodies. McAb EP-1 (for erythropoietic antigen-1) inhibits the formation of BFU-E and CFU-E, but not CFU-GM, colonies in complement-dependent cytotoxicity assays. By cell sorting analysis, about 90% of erythroid progenitors (CFU-E, BFU-E) were recovered in the antigen-positive fraction. Seven percent of the cells in this fraction were progenitors (versus 0.1% in the negative fraction). The expression of EP-1 antigen is greatly enhanced in K562 cells, using inducers of hemoglobin synthesis. McAb EP-2 fails to inhibit BFU-E and CFU-E colony formation in complement-dependent cytotoxicity assays. EP-2 antigen is predominantly expressed on in vitro derived immature erythroblasts, and it is weakly expressed on mature erythroblasts. The findings with McAb EP-1 provide evidence that erythroid progenitors (BFU-E and CFU-E) express determinants that fail to be expressed on other progenitor cells and hence appear to be unique to the erythroid lineage. McAb EP-1 and EP-2 are potentially useful for studies of erythroid differentiation and progenitor cell isolation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Taha Sen ◽  
Jun Chen ◽  
Sofie Singbrant

AbstractProduction of red blood cells relies on proper mitochondrial function, both for their increased energy demands during differentiation and for proper heme and iron homeostasis. Mutations in genes regulating mitochondrial function have been reported in patients with anemia, yet their pathophysiological role often remains unclear. PGC1β is a critical coactivator of mitochondrial biogenesis, with increased expression during terminal erythroid differentiation. The role of PGC1β has however mainly been studied in skeletal muscle, adipose and hepatic tissues, and its function in erythropoiesis remains largely unknown. Here we show that perturbed PGC1β expression in human hematopoietic stem/progenitor cells from both bone marrow and cord blood results in impaired formation of early erythroid progenitors and delayed terminal erythroid differentiation in vitro, with accumulations of polychromatic erythroblasts, similar to MDS-related refractory anemia. Reduced levels of PGC1β resulted in deregulated expression of iron, heme and globin related genes in polychromatic erythroblasts, and reduced hemoglobin content in the more mature bone marrow derived reticulocytes. Furthermore, PGC1β knock-down resulted in disturbed cell cycle exit with accumulation of erythroblasts in S-phase and enhanced expression of G1-S regulating genes, with smaller reticulocytes as a result. Taken together, we demonstrate that PGC1β is directly involved in production of hemoglobin and regulation of G1-S transition and is ultimately required for proper terminal erythroid differentiation.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4235-4235
Author(s):  
W. Clark Lambert ◽  
Santiago A. Centurion

Abstract We have previously shown that the primary cell cycle defect in the inherited, cancer-prone, bone marrow failure associated disease, Fanconi anemia (FA), is not in the G2 phase of the cell cycle, as had been thought for many years, but rather in the S phase. FA cells challenged with the DNA cross-linking agent, psoralen coupled with long wavelength, ultraviolet (UVA) radiation (PUVA), fail to slow their progression through the S phase of the subsequent cell cycle, as do normal cells. FA cells are extremely sensitive to the cytotoxic and clastogenic effects of DNA cross-linkers, such as PUVA, so much so that the diagnosis of FA is based on an assay, the “DEB test”, in which cells are examined for clastogenic and cytotoxic effects of diepoxybutane (DEB), a DNA cross-linking agent. More recently, we have shown that artificially slowing the cell cycle of FA cells exposed to PUVA by subsequent treatment with agents which slow their progression through S phase leads to markedly increased viability and reduced chromosome breakage in vitro. We now show that similar results can be obtained in vivo in patients with another DNA repair deficiency disease, xeroderma pigmentosum (XP), a recessively inherited disorder associated with defective repair of sunlight induced adducts in the DNA of sun-exposed tissues followed by development of numerous mutations causing large numbers of cancers in these same tissues. We treated two patients with XP, a light complected black male and a white female, both 14 years of age, in sun-exposed areas with 5-fluorouracil, an inhibitor of DNA synthesis, daily for three months. In contrast to normal patients, who only show clinical results if an inflammatory response is invoked, marked improvement in the clinical appearance of the skin was seen with no inflammation observed. This effect was confirmed histologically by examining epidermis adjacent to excised lesions in sun-exposed areas and further verified by computerized image analysis. Treatment with agents that slow progression through S phase, such as hydroxyurea, may similarly improve clinical outcomes in patients with FA or others who are developing bone marrow failure.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3136-3136
Author(s):  
Jing Zhang ◽  
Yangang Liu ◽  
Caroline Beard ◽  
Rudolf Jaenisch ◽  
Tyler Jacks ◽  
...  

Abstract K-ras plays an important role in hematopoiesis. K-ras-deficient mouse embryos die around E12-E13 with severe anemia. In humans, oncogenic mutations in K-ras gene are identified in ~30% of patients with acute myeloid leukemia. We used mouse primary erythroid progenitors as a model system to study the role of K-ras signaling in vivo. Both Epo- and stem cell factor (SCF) - dependent Akt activation are greatly reduced in K-ras-/- fetal liver cells, whereas other cytokine- induced pathways, including Stat5 and p44/p42 MAP kinase, are activated normally. The reduced Akt activation in erythroid progenitors per se leads to delayed erythroid differentiation. Our data identify K-ras as the major regulator for cytokine-dependent Akt activation, which is important for erythroid differentiation in vivo. Overexpression of oncogenic Ras in primary fetal erythroid progenitors led to their continual proliferation and a block in terminal erythroid differentiation. Similarly, we found that primary fetal liver cells expressing oncogenic K-ras from its endogenous locus undergo abnormal proliferation and terminal erythroid differentiation is partially blocked. We are currently investigating the signal transduction pathways activated by this oncogenic K-ras that underlies these cellular phenotypes.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1988-1988
Author(s):  
Jadwiga Gasiorek ◽  
Gregory Chevillard ◽  
Zaynab Nouhi ◽  
Volker Blank

Abstract Abstract 1988 Poster Board I-1010 The NF-E2 transcription factor is a heterodimer composed of a large hematopoietic-specific subunit called p45 and widely expressed 18 to 20-kDa small Maf subunits. In MEL (mouse erythroleukemia) cells, a model of erythroid differentiatin, the absence of p45 is inhibiting chemically induced differentiation, including induction of globin genes. In vivo, p45 knockout mice were reported to show splenomegaly, severe thrompocytopenia and mild erythroid abnormalities. Most of the mice die shortly after birth due to haemorrhages. The animals that survive display increased bone, especially in bony sites of hematopoiesis. We confirmed that femurs of p45 deficient mice are filled with bone, thus limiting the space for cells. Hence, we observed a decrease in the number of hematopoietic cells in the bone marrow of 3 months old mice. In order to analyze erythroid progenitor populations we performed flow cytometry using the markers Ter119 and CD71. We found that p45 deficient mice have an increased proportion of early erythroid progenitors (proerythroblasts) and a decreased proportion of late stage differentiated red blood cells (orthochromatic erythroblasts and reticulocytes) in the spleen, when compared to wild-type mice. We showed that the liver of p45 knockout adult mice is also becoming a site of red blood cell production. The use of secondary sites, such as the spleen and liver, suggests stress erythropoiesis, likely compensating for the decreased production of red blood cells in bone marrow. In accordance with those observations, we observed about 2 fold increased levels of erythropoietin in the serum of p45 knockout mice.Overall, our data suggest that p45 NF-E2 is required for proper functioning of the erythroid compartment in vivo. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1224-1224
Author(s):  
Junke Zheng ◽  
Chengcheng Zhang

Abstract Abstract 1224 How stem cells interact with the microenvironment to regulate their cell fates and metabolism is largely unknown. Here we show that, in a hematopoietic stem cell (HSC) -specific inducible knockout model, the cytoskeleton-modulating protein profilin 1 (pfn1) is essential for the maintenance of multiple cell fates and metabolism of HSCs. The deletion of pfn1 in HSCs led to bone marrow failure, loss of quiescence, increased apoptosis, and mobilization of HSCs in vivo. In reconstitution analyses, pfn1-deficient cells were selectively lost from mixed bone marrow chimeras. By contrast, pfn1 deletion did not significantly affect differentiation or homing of HSCs. When compared to wild-type cells, levels of expression of Hif-1a, EGR1, and MLL were lower and an earlier switch from glycolysis to mitochondrial respiration with increased ROS level was observed in pfn1-deficient HSCs. This switch preceded the detectable alteration of other cell fates. Importantly, treatment of pfn1-deficient mice with the antioxidant N-acetyl-l-cysteine reversed the ROS level and loss of quiescence of HSCs, suggesting that pfn1 maintained metabolism is required for the quiescence of HSCs. Furthermore, we demonstrated that expression of wild-type pfn1 but not the actin-binding deficient or poly-proline binding-deficient mutants of pfn1 rescued the defective phenotype of pfn1-deficient HSCs. This result indicates that actin-binding and proline-binding activities of pfn1 are required for its function in HSCs. Thus, pfn1 plays an essential role in regulating the retention and metabolism of HSCs in the bone marrow microenvironment. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document