scholarly journals Impaired myelopoiesis in congenital neutropenia: insights into clonal and malignant hematopoiesis

Hematology ◽  
2021 ◽  
Vol 2021 (1) ◽  
pp. 514-520
Author(s):  
Julia T. Warren ◽  
Daniel C. Link

Abstract A common feature of both congenital and acquired forms of bone marrow failure is an increased risk of developing acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). Indeed, the development of MDS or AML is now the major cause of mortality in patients with congenital neutropenia. Thus, there is a pressing clinical need to develop better strategies to prevent, diagnose early, and treat MDS/AML in patients with congenital neutropenia and other bone marrow failure syndromes. Here, we discuss recent data characterizing clonal hematopoiesis and progression to myeloid malignancy in congenital neutropenia, focusing on severe congenital neutropenia (SCN) and Shwachman-Diamond syndrome. We summarize recent studies showing excellent outcomes after allogenic hematopoietic stem cell transplantation for many (but not all) patients with congenital neutropenia, including patients with SCN with active myeloid malignancy who underwent transplantation. Finally, we discuss how these new data inform the current clinical management of patients with congenital neutropenia.

Hematology ◽  
2017 ◽  
Vol 2017 (1) ◽  
pp. 88-95 ◽  
Author(s):  
Blanche P. Alter

Abstract Patients with inherited bone marrow failure syndromes are usually identified when they develop hematologic complications such as severe bone marrow failure, myelodysplastic syndrome, or acute myeloid leukemia. They often have specific birth defects or other physical abnormalities that suggest a syndrome, and sequencing of specific genes or next-generation sequencing can determine or confirm the particular syndrome. The 4 most frequent syndromes are Fanconi anemia, dyskeratosis congenita, Diamond Blackfan anemia, and Shwachman Diamond syndrome. This review discusses the major complications that develop as the patients with these syndromes age, as well as additional late effects following hematopoietic stem cell transplantation. The most common complications are iron overload in transfused patients and syndrome-specific malignancies in untransplanted patients, which may occur earlier and with higher risks in those who have received transplants.


Blood ◽  
2017 ◽  
Vol 130 (21) ◽  
pp. 2257-2264 ◽  
Author(s):  
Blanche P. Alter

Abstract Patients with inherited bone marrow failure syndromes are usually identified when they develop hematologic complications such as severe bone marrow failure, myelodysplastic syndrome, or acute myeloid leukemia. They often have specific birth defects or other physical abnormalities that suggest a syndrome, and sequencing of specific genes or next-generation sequencing can determine or confirm the particular syndrome. The 4 most frequent syndromes are Fanconi anemia, dyskeratosis congenita, Diamond Blackfan anemia, and Shwachman Diamond syndrome. This review discusses the major complications that develop as the patients with these syndromes age, as well as additional late effects following hematopoietic stem cell transplantation. The most common complications are iron overload in transfused patients and syndrome-specific malignancies in untransplanted patients, which may occur earlier and with higher risks in those who have received transplants.


2020 ◽  
Vol 4 (21) ◽  
pp. 5540-5546
Author(s):  
Laurent Schmied ◽  
Patricia A. Olofsen ◽  
Pontus Lundberg ◽  
Alexandar Tzankov ◽  
Martina Kleber ◽  
...  

Abstract Acquired aplastic anemia and severe congenital neutropenia (SCN) are bone marrow (BM) failure syndromes of different origin, however, they share a common risk for secondary leukemic transformation. Here, we present a patient with severe aplastic anemia (SAA) evolving to secondary chronic neutrophilic leukemia (CNL; SAA-CNL). We show that SAA-CNL shares multiple somatic driver mutations in CSF3R, RUNX1, and EZH2/SUZ12 with cases of SCN that transformed to myelodysplastic syndrome or acute myeloid leukemia (AML). This molecular connection between SAA-CNL and SCN progressing to AML (SCN-AML) prompted us to perform a comparative transcriptome analysis on nonleukemic CD34high hematopoietic stem and progenitor cells, which showed transcriptional profiles that resemble indicative of interferon-driven proinflammatory responses. These findings provide further insights in the mechanisms underlying leukemic transformation in BM failure syndromes.


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Supanun Lauhasurayotin ◽  
Geoff D. Cuvelier ◽  
Robert J. Klaassen ◽  
Conrad V. Fernandez ◽  
Yves D. Pastore ◽  
...  

AbstractInherited bone marrow failure syndromes (IBMFSs) are genetically heterogeneous disorders with cytopenia. Many IBMFSs also feature physical malformations and an increased risk of cancer. Point mutations can be identified in about half of patients. Copy number variation (CNVs) have been reported; however, the frequency and spectrum of CNVs are unknown. Unfortunately, current genome-wide methods have major limitations since they may miss small CNVs or may have low sensitivity due to low read depths. Herein, we aimed to determine whether reanalysis of NGS panel data by normalized coverage value could identify CNVs and characterize them. To address this aim, DNA from IBMFS patients was analyzed by a NGS panel assay of known IBMFS genes. After analysis for point mutations, heterozygous and homozygous CNVs were searched by normalized read coverage ratios and specific thresholds. Of the 258 tested patients, 91 were found to have pathogenic point variants. NGS sample data from 165 patients without pathogenic point mutations were re-analyzed for CNVs; 10 patients were found to have deletions. Diamond Blackfan anemia genes most commonly exhibited heterozygous deletions, and included RPS19, RPL11, and RPL5. A diagnosis of GATA2-related disorder was made in a patient with myelodysplastic syndrome who was found to have a heterozygous GATA2 deletion. Importantly, homozygous FANCA deletion were detected in a patient who could not be previously assigned a specific syndromic diagnosis. Lastly, we identified compound heterozygousity for deletions and pathogenic point variants in RBM8A and PARN genes. All deletions were validated by orthogonal methods. We conclude that careful analysis of normalized coverage values can detect CNVs in NGS panels and should be considered as a standard practice prior to do further investigations.


1999 ◽  
Vol 107 (1) ◽  
pp. 49-54 ◽  
Author(s):  
Blanche P. Alter ◽  
Manjusha Kumar ◽  
Lillian L. Lockhart ◽  
Philippa G. Sprinz ◽  
Thomas F. Rowe

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2827-2827
Author(s):  
Akiko Nakamura ◽  
Tsutomu Shichishima ◽  
Hideyoshi Noji ◽  
Kazuhiko Ikeda ◽  
Yukio Maruyama

Abstract PNH is one disorder of bone marrow failure syndromes, including aplastic anemia and myelodysplastic syndrome. It is considered that immunologic mechanisms by cytotoxic T lymphocytes (CTLs) and interferon-γ (IFN-γ) contribute to hypoplastic bone marrow of these disorders. In addition, PNH is an acquired clonal disorder of the hematopoietic stem cell. Recently, it has been reported that analysis of T cell-antigen receptor (TCR)-Vβ repertoires, especially TCR-Vβ CDR3 (complementarity- determining region 3) spectrotypes, is an effective tool to study immunologic mechanisms by CTLs in pathophysiology of PNH (Karadimitris et al, Blood, 2000; Kook et al, Blood, 2002; Risitano et al, Blood, 2002). In the present study, we investigated 21 kinds of TCR-Vβ repertoires by flow cytometry in CD4 and CD8 lymphocytes from 5 PNH patients and a healthy volunteer and the TCR-Vβ CDR3 spectrotypes using polymerase chain reaction assay in CD4 and CD8 lymphocytes from 3 of 5 PNH patients and the control. We also quantitated intracellular IFN-γ in CD4 and CD8 lymphocytes from 5 PNH patients and the control according to the method by Sloand et al (Blood, 2002). We found no specific TCR-Vβ repertoires in CD4 and CD8 lymphocytes from PNH patients compared with the control. The TCR-Vβ repertoires with relative increase of CD4 or CD8 lymphocytes (over 10 of ratio of the proportion of each TCR-Vβ repertoire in a PNH patient/the proportion of the same TCR-Vβ repertoire in a healthy volunteer) were 13.6 or 4 and 22 in Case 1, 3 and 11 or 1 in Case 2, 3 and 13.6 or 3 in Case 3, 5.3 and 7.2 or 2, 3, 7, and 18 in Case 4, and 4, 5.2, 13.6, 16, and 23 or 1 and 14 in Case 5, respectively. TCR-Vβ CDR3 spectrotyping showed that in CD4 lymphocytes most CDR3 patterns were chiefly polyclonal, except for one oligoclonal (Case 1) and one monoclonal (Case 3) patterns of TCR-Vβ25; in CD8 lymphocytes most CDR3 consisted of polyclonal, oligoclonal, and/or monoclonal patterns, suggesting the possibility that CD8 lymphocytes recognize much more antigens of abnormal cells, probably including PNH clones, than CD4 lymphocytes. Unfortunately, we found the same patterns as described above in CD8 lymphocytes from the control, although CD4 lymphocytes from the control presented only polyclonal pattern of CDR3. Quantitative analyses of IFN-γ showed that index values of IFN-γ in CD4 and CD8 lymphocytes from PNH patients were higher than those from the control. However, we did not find any significant correlations between the spectrotypes of TCR-Vβ CDR3 and the index values of IFN-γ in PNH patients, suggesting that TCR-Vβ repertoires with monoclonal and oligoclonal CDR3 patterns do not necessarily produce much IFN-γ. In conclusion, our findings suggest that TCR-Vβ CDR3 spectrotyping is more effective tool to resolve some immune mechanisms of pathophysiology in PNH, especially by auto-reactive CTLs.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3206-3206 ◽  
Author(s):  
Philip S. Rosenberg ◽  
Cornelia Zeidler ◽  
Audrey Anna Bolyard ◽  
Blanche P. Alter ◽  
Mary Ann Bonilla ◽  
...  

Abstract Abstract 3206 Poster Board III-143 BACKGROUND G-CSF therapy reduces sepsis mortality in patients with severe congenital neutropenia (SCN), but effective therapy has revealed a high syndromic predisposition to myelodysplastic syndrome and acute myeloid leukemia (MDS/AML), particularly in patients who require higher doses of G-CSF. Although the long-term risk of MDS/AML after 10 or more years on therapy remains uncertain, prior data on the limited number of patients with long-term follow-up suggested the hazard rate might be as high as 8%/year after 12 years on G-CSF. METHODS We updated prospective follow-up of 374 well-characterized patients with SCN on long-term G-CSF enrolled in the Severe Chronic Neutropenia International Registry (Blood. 2006 Jun 15; 107(12):4628-35). We ascertained event-free time, deaths from sepsis, and MDS/AML events that accrued since our previous report. Follow-up was censored for patients who received a bone marrow transplant. RESULTS The update yielded 3590 person-years of follow-up versus 2043 in the prior report; among patients treated for 10 or more years, there were 849 person-years versus just 67 previously. In all, there were 61 MDS/AML events and 29 deaths from sepsis, versus prior totals of 44 and 19, respectively. After including up-to-date follow-up, the estimated annual hazard of death from sepsis remained qualitatively stable, at 0.81%/year (95% Confidence Interval, CI: 0.56 – 1.16%/year). Similarly, during the first five years after the start of G-CSF therapy, the updated estimate of the hazard curve for MDS/AML showed the same increasing trend as the previous estimate. However, in contrast to the prior estimate that showed a subsequent increasing trend over time (with a large margin of error), the updated hazard curve attained a plateau: after 10 years on G-CSF, the estimated hazard of MDS/AML was 2.3%/year (95% CI: 1.7 – 2.9%/year). Although this aspect of the natural history appears less dire than first suggested, after 15 years on G-CSF, the cumulative incidence was 10% (95% CI: 6 – 14%) for death from sepsis and 22% (95% CI: 17 – 28%) for MDS/AML. Furthermore, for the subset of patients who failed to achieve at 6 months an absolute neutrophil count at or above the median value for the cohort (2188 cells/μL) despite doses of G-CSF at or above the median (8 μg/kg/day), the cumulative incidence after 15 years on G-CSF was 18% (95% CI: 7 – 28%) for death from sepsis and 34% (95% CI: 21 – 47%) for MDS/AML. With additional follow-up, the association of G-CSF dose at 6 months with the relative hazard of MDS/AML became more strongly statistically significant (P = 0.003 versus P = 0.024; the hazard of MDS/AML increased by 1.24-fold (95% CI: 1.08-1.43-fold) per doubling of the dose of G-CSF). CONCLUSIONS For SCN patients maintained on G-CSF therapy, the hazard of MDS/AML over the long-term falls significantly below the range suggested by preliminary data. The updated hazard estimate of 2.3%/year after 10 years on G-CSF (which includes both MDS and AML events) is similar to that for other inherited bone marrow failure syndromes with a high intrinsic risk of AML, notably Fanconi anemia and dyskeratosis congenita. Nonetheless, the cumulative incidence of both MDS/AML and sepsis death rises to very high levels, and the data continue to support the hypothesis that SCN patients with higher G-CSF requirements are also at higher risk of leukemia. Disclosures Boxer: Amgen Inc.: Equity Ownership. Dale:Amgen Inc.: Consultancy, Honoraria, Research Funding, Speaker.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 387-387
Author(s):  
Ghada M Kunter ◽  
Jill Woloszynek ◽  
Daniel C. Link

Abstract Abstract 387 A shared feature of many bone marrow failure syndromes is their propensity to develop myelodysplasia (MDS) or acute myeloid leukemia (AML). The molecular mechanisms that underlie this susceptibility are largely unknown. Severe congenital neutropenia (SCN) is an inherited disorder of granulopoiesis that is associated with a marked increased risk of developing MDS/AML. Somatic mutations of CSF3R, encoding the G-CSF receptor (G-CSFR), that truncate the carboxy-terminal tail are associated with the development of MDS/AML in SCN. Transgenic mice carrying a ‘knock-in’ mutation of their Csf3r (termed d715 G-CSFR) reproducing a mutation found in a patient with SCN have normal basal granulopoiesis but an exaggerated neutrophil response to G-CSF treatment. We previously reported that the d715 G-CSFR is able to cooperate with the PML-RARƒÑ oncogene to induce AML in mice. Herein, we summarize data supporting the hypothesis that alterations in the bone marrow microenvironment induced by G-CSF contribute to oxidative DNA damage in hematopoietic stem/progenitors cells (HSPCs) and possibly leukemic transformation. We previously showed that G-CSF treatment is associated with a marked loss of osteoblasts in the bone marrow, thereby potentially disrupting the osteoblast stem cell niche (Semerad, Blood 2005). Of note, patients with SCN chronically treated with G-CSF are prone to develop osteopenia, suggesting that osteoblast suppression by G-CSF also may occur in humans. We first asked whether the d715 G-CSFR was able to mediate this response. Wild-type or d715 G-CSFR were treated with G-CSF for 1–7 days and osteoblast activity in the bone marrow measured by expression of CXCL12 and osteocalcin. Consistent with previous reports, a decrease in osteocalcin and CXCL12 was not apparent until after 3 days of G-CSF treatment and reached a maximum after 7 days. Surprisingly, the magnitude of osteoblast suppression was greater in d715 G-CSFR compared with wild-type mice. The fold-decrease in osteocalcin mRNA from baseline in wild-type mice was 147 ± 70.1 versus 1,513 ± 1091 in d715 G-CSFR mice (p < 0.001). Likewise, a greater fold-decrease in CXCL12 mRNA was observed. We next assessed oxidative stress in c-KIT+ Sca+ lineage− (KSL) progenitors after G-CSF treatment. In both wild-type and d715 G-CSFR KSL cells no increase in reactive oxygen species (ROS) was observed at baseline or 12 hours after a single dose of G-CSF. However, after 7 days of G-CSF, a significant increase (3.4 ± 0.1 fold; p = 0.009) in ROS was observed in d715 G-CSFR but not wild-type KSL cells. To determine whether oxidative stress contributed to DNA damage, histone H2AX phosphorylation (pH2AX) was measured by flow cytometry. No increase in pH2AX was observed after short-term (less than 24 hour) G-CSF treatment. However, a modest but significant (1.9 ± 0.1 fold; p = 0.0007) increase in pH2AX was observed in d715 G-CSFR but not wild-type KSL cells after 7 days of G-CSF. To determine whether increased oxidative stress was casually linked to DNA damage, we co-administered the antioxidant N-acetyl cysteine (NAC) during G-CSF treatment. As expected, induction of ROS in KSL cells was markedly suppressed by NAC administration. Importantly, the increase in pH2AX levels in d715 G-CSFR KSL cells induced by G-CSF was completely blocked by NAC administration. Finally, to determine whether alterations in the bone marrow microenvironment, specifically decreased CXCL12 expression, contributed to DNA damage, we treated mice with AMD3100, a specific antagonist of CXCR4 (the major receptor for CXCL12). Treatment of wild-type or d715 G-CSFR mice with a single dose of G-CSF (3 hour time point) or with AMD3100 alone did not induce H2AXp. However, co-administration of AMD3100 with a single dose of G-CSF induced modest but significant H2AXp in d715 G-CSFR KSL cells (5.74 ± 1.06 fold; P<0.001). Collectively, these data suggest a model in which alterations in the bone marrow microenvironment induced by G-CSF may contribute to genetic instability in HSPCs and ultimately leukemic transformation. The mutant CSF3R may contribute to leukemogenesis through both increased ROS production in HSPCs and increased suppression of osteoblasts. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 298-298
Author(s):  
Hengjun Chao ◽  
Johnson M. Liu

Abstract Introduction: Aged hematopoietic stem cells (HSCs) are known to functionally decline and are prone to development of myeloid malignancies. Recent work has highlighted the twin roles of replication stress and decreased ribosome biogenesis as drivers for the accumulation of DNA damage and senescence. Certain bone marrow failure syndromes, including Shwachman-Diamond syndrome (SDS), Diamond-Blackfan anemia (DBA), and the acquired 5q- syndrome, are characterized by defects in ribosome biogenesis. Furthermore, recent work has suggested a role for p53 activation, through the 5S ribonucleoprotein particle (RNP), in driving cells to senescence following perturbation of ribosome biogenesis. Methods and Results: Here, we have used multiplexing flow cytometry protocols to define, enumerate, and characterize hematopoietic cells of distinct differentiation stages and lineages in 2 DBA cord bloods and 4 adult bone marrows (2 SDS, 1 DBA, and 1 patient with a diminutive somatic deletion of 5q: ages 27, 32, 40, and 30, respectively), as compared with 4 normal cord bloods and 6 normal adult bone marrows. We included a patient with bona fide MDS (diminutive somatic deletion of 5q including RPS14 in a young adult) to compare with the SDS and DBA patients, who do not meet criteria for MDS. Our preliminary results revealed significant defects in the primitive HSC and multipotent progenitor (MPP) compartments in both DBA and SDS. Specifically, we found in DBA and SDS bone marrow and cord blood samples (compared to normal controls): significantly decreased numbers of primitive HSCs (Lin-CD34+CD133+CD38-CD45RA-CD49f+CD90+) and MPPs (Lin-CD34+CD133+CD38-CD45RA-CD49f-CD90-); increased levels of apoptosis and dysregulated proliferation; and G0-1/S cell cycle arrest. We also found significant increases in senescence-associated β-galactosidase staining and G0-1/S cell cycle arrest in Lin-CD34+ and Lin-CD34+CD38-CD133+ subpopulations in all 4 adult patient bone marrows, as compared with normal adult bone marrows processed in identical fashion [see Fig. 1 for representative data from Lin-CD34+CD133+ hematopoietic progenitor cells (HPCs) from one SDS patient]. Foci of the phosphorylated form of the variant histone H2AX (γH2AX) mark DNA damage, and γH2AX staining was similarly increased in comparison to controls (Fig. 1). The mechanism whereby disturbed ribosome biogenesis induces senescence has been suggested as involving 5S RNP-mediated p53 activation. However, our experiments did not demonstrate increased levels of p53 in the SDS patient marrows, as assessed by intracellular staining. Levels of p16, a well known marker of senescence, were markedly increased in the SDS patient samples, when compared to controls. Finally, in the 2 DBA cord bloods analyzed, there was increased senescence-associated β-galactosidase staining but to a lesser degree than in the adult bone marrow samples (as might be expected with temporal progression). Discussion: Taken together, our data suggest that ribosomopathies (which often present in childhood) are disorders of premature senescence. Consequent DNA damage accumulation and decreased repair and compensation may account for the development of MDS and acute myeloid leukemia, disorders seen in young ribosomopathy patients that ordinarily are rare in the general pediatric and young adult population. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document