Reliability of echo systolic pulmonary arterial pressure to detect new definition of pulmonary hypertension

Author(s):  
Henning Gall ◽  
Athiththan Yogeswaran ◽  
Khodr Tello ◽  
Natascha Sommer ◽  
Hossein Ardeschir Ghofrani ◽  
...  
2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Ekaterina Borodulina ◽  
Alexander M Shutov

Abstract Background and Aims An important predictor of cardiovascular mortality and morbidity in hemodialysis patients is left ventricular hypertrophy. Also, pulmonary hypertension is a risk factor for mortality and cardiovascular events in hemodialysis patients. The aim of this study was to investigate cardiac remodeling and the dynamics of pulmonary arterial pressure during a year-long hemodialysis treatment and to evaluate relationship between pulmonary arterial pressure and blood flow in arteriovenous fistula. Method Hemodialysis patients (n=88; 42 males, 46 females, mean age was 51.7±13.0 years) were studied. Echocardiography and Doppler echocardiography were performed in the beginning of hemodialysis treatment and after a year. Echocardiographic evaluation was carried out on the day after dialysis. Left ventricular mass index (LVMI) was calculated. Left ventricular ejection fraction (LVEF) was measured by the echocardiographic Simpson method. Arteriovenous fistula flow was determined by Doppler echocardiography. Pulmonary hypertension was diagnosed according to criteria of Guidelines for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology. Results Pulmonary hypertension was diagnosed in 47 (53.4%) patients. Left ventricular hypertrophy was revealed in 71 (80.7%) patients. Only 2 (2.3%) patients had LVEF<50%. At the beginning of hemodialysis correlation was detected between systolic pulmonary arterial pressure and LVMI (r=0.52; P<0.001). Systolic pulmonary arterial pressure negatively correlated with left ventricular ejection fraction (r=-0.20; P=0.04). After a year of hemodialysis treatment LVMI decreased from 140.49±42.95 to 123.25±39.27 g/m2 (р=0.006) mainly due to a decrease in left ventricular end-diastolic dimension (from 50.23±6.48 to 45.13±5.24 mm, p=0.04) and systolic pulmonary arterial pressure decreased from 44.83±14.53 to 39.14±10.29 mmHg (р=0.002). Correlation wasn’t found between systolic pulmonary arterial pressure and arteriovenous fistula flow (r=0.17; p=0.4). Conclusion Pulmonary hypertension was diagnosed in half of patients at the beginning of hemodialysis treatment. Pulmonary hypertension in hemodialysis patients was associated with left ventricular hypertrophy, systolic left ventricular dysfunction. After a year-long hemodialysis treatment, a regress in left ventricular hypertrophy and a partial decrease in pulmonary arterial pressure were observed. There wasn’t correlation between arteriovenous fistula flow and systolic pulmonary arterial pressure.


2000 ◽  
Vol 10 (2) ◽  
pp. 130-139 ◽  
Author(s):  
Ronald B. Tanke ◽  
Otto Daniëls ◽  
Henk J. van Lier ◽  
Arno F. van Heyst ◽  
Cees Festen

AbstractObjectivesThis prospective study was designed to monitor severe pulmonary hypertension during extra corporeal membrane oxygenation using echo Doppler variables.BackgroundAll neonates treated with extracorporeal membrane oxygenation also have severe pulmonary hypertension. A study which monitors the reaction of the pre-existing pulmonary hypertension during extracorporeal oxygenation by frequent sampling of those variables related to pulmonary pressure is still lacking. Such a study is necessary to analyze the complex haemodynamic changes in patients undergoing extracorporeal membrane oxygenation.MethodIn 29 neonates, we estimated pulmonary arterial pressure using peakflow velocity of regurgitation across the tricuspid- and pulmonary valve, peakflow velocity of shunting across persistent arterial ductus, and systolic time intervals of the right ventricle. Correlation between the several estimations of pulmonary arterial pressure were analysed with the Spearman correlation coefficient.ResultsSystolic pulmonary arterial pressure measured by the velocity of tricuspid regurgitation illustrated severe pulmonary hypertension prior to extra corporeal membrane oxygenation (mean 63 mmHg, sd 20). Similar levels for the systolic pulmonary arterial pressure could be derived (mean 73 mmHg, sd 17) from ductal shunting. A fair correlation of 0.76 (p< 0.002) could be demonstrated. Pulmonary hypertension responded well and quickly to treatment by extra corporeal membrane oxygenation, with reductions within 24 hours to mean systolic levels of 35 mmHg, sd 23. This very early reaction has not previously been demonstrated and could be of importance in defining parameters for weaning from cardiopulmonary bypass. Diastolic pulmonary arterial pressure was investigated because of its relation to vascular resistance. It proved more difficult to measure because of the low incidence of pulmonary regurgitation. Derived diastolic pressures did not show any good correlations.ConclusionPulmonary hypertension is well documentated prior to extra corporeal membrane oxygenation and respons very quickly to the institution of treatment. Ultra sound techniques are indicated at the bedsite, and prove useful in monitoring pulmonary blood pressure during the procedure.


2021 ◽  
Vol 118 (17) ◽  
pp. e2023130118
Author(s):  
Zdravka Daneva ◽  
Corina Marziano ◽  
Matteo Ottolini ◽  
Yen-Lin Chen ◽  
Thomas M. Baker ◽  
...  

Recent studies have focused on the contribution of capillary endothelial TRPV4 channels to pulmonary pathologies, including lung edema and lung injury. However, in pulmonary hypertension (PH), small pulmonary arteries are the focus of the pathology, and endothelial TRPV4 channels in this crucial anatomy remain unexplored in PH. Here, we provide evidence that TRPV4 channels in endothelial cell caveolae maintain a low pulmonary arterial pressure under normal conditions. Moreover, the activity of caveolar TRPV4 channels is impaired in pulmonary arteries from mouse models of PH and PH patients. In PH, up-regulation of iNOS and NOX1 enzymes at endothelial cell caveolae results in the formation of the oxidant molecule peroxynitrite. Peroxynitrite, in turn, targets the structural protein caveolin-1 to reduce the activity of TRPV4 channels. These results suggest that endothelial caveolin-1–TRPV4 channel signaling lowers pulmonary arterial pressure, and impairment of endothelial caveolin-1–TRPV4 channel signaling contributes to elevated pulmonary arterial pressure in PH. Thus, inhibiting NOX1 or iNOS activity, or lowering endothelial peroxynitrite levels, may represent strategies for restoring vasodilation and pulmonary arterial pressure in PH.


Sign in / Sign up

Export Citation Format

Share Document