Electrical stimulation of the expiratory muscles to maintain muscle activity during the acute stages of mechanical ventilation: a pilot RCT

Author(s):  
Annemijn Jonkman ◽  
Tim Frenzel ◽  
Angus Mc Lachlan ◽  
Euan Mc Caughey ◽  
Jeroen Schouten ◽  
...  
2018 ◽  
Vol 129 (3) ◽  
pp. 490-501 ◽  
Author(s):  
Jonne Doorduin ◽  
Lisanne H. Roesthuis ◽  
Diana Jansen ◽  
Johannes G. van der Hoeven ◽  
Hieronymus W. H. van Hees ◽  
...  

Abstract What We Already Know about This Topic What This Article Tells Us That Is New Background Respiratory muscle weakness in critically ill patients is associated with difficulty in weaning from mechanical ventilation. Previous studies have mainly focused on inspiratory muscle activity during weaning; expiratory muscle activity is less well understood. The current study describes expiratory muscle activity during weaning, including tonic diaphragm activity. The authors hypothesized that expiratory muscle effort is greater in patients who fail to wean compared to those who wean successfully. Methods Twenty adult patients receiving mechanical ventilation (more than 72 h) performed a spontaneous breathing trial. Tidal volume, transdiaphragmatic pressure, diaphragm electrical activity, and diaphragm neuromechanical efficiency were calculated on a breath-by-breath basis. Inspiratory (and expiratory) muscle efforts were calculated as the inspiratory esophageal (and expiratory gastric) pressure–time products, respectively. Results Nine patients failed weaning. The contribution of the expiratory muscles to total respiratory muscle effort increased in the “failure” group from 13 ± 9% at onset to 24 ± 10% at the end of the breathing trial (P = 0.047); there was no increase in the “success” group. Diaphragm electrical activity (expressed as the percentage of inspiratory peak) was low at end expiration (failure, 3 ± 2%; success, 4 ± 6%) and equal between groups during the entire expiratory phase (P = 0.407). Diaphragm neuromechanical efficiency was lower in the failure versus success groups (0.38 ± 0.16 vs. 0.71 ± 0.36 cm H2O/μV; P = 0.054). Conclusions Weaning failure (vs. success) is associated with increased effort of the expiratory muscles and impaired neuromechanical efficiency of the diaphragm but no difference in tonic activity of the diaphragm.


2010 ◽  
Vol 25 (6) ◽  
pp. 475-478 ◽  
Author(s):  
Rodrigo Guellner Ghedini ◽  
Ane Margarites ◽  
Elaine Aparecida Felix ◽  
Rogério Gastal Xavier ◽  
Cristiano Feijó Andrade

PURPOSE: To develop an animal model of diaphragmatic electrical stimulation able to generate an appropriate ventilatory support through the direct implantation of electrodes in the diaphragm (electroventilation). METHODS: Six New Zealand female rabbits (2-3 kg) were placed on mechanical ventilation. Then, a laparotomy was performed in order to identify the motor points in each hemidiaphragm, followed by the implantation of the electrodes for diaphragmatic stimulation. We tested two types of electrodes according to the conduction of electrical stimulation: unipolar and bipolar. The electrodes were placed on different occasions in the same animals and tested with current intensities of 20, 26 and 32 mA. Each current intensity was repeated three times for 10 respiratory cycles with 1 minute interval between each cycle, and 5 minutes for new current intensity. We recorded the relationship between current intensity and inspiratory volume. RESULTS: The electrodes adequately stimulate the diaphragm and obtain inspired volumes using different intensity currents. The bipolar electrode generated inspiratory volumes as high as 4.5 times of baseline while the unipolar electrode reached up to 3.5 times of baseline. CONCLUSION: This model has proved to be effective for studying the performance of the diaphragm under different electrical stimulations using different set of electrodes.


2013 ◽  
Vol 39 (4) ◽  
pp. 490-494 ◽  
Author(s):  
Rodrigo Guellner Ghedini ◽  
Julio de Oliveira Espinel ◽  
Elaine Aparecida Felix ◽  
Artur de Oliveira Paludo ◽  
Rodrigo Mariano ◽  
...  

Every year, a large number of individuals become dependent on mechanical ventilation because of a loss of diaphragm function. The most common causes are cervical spinal trauma and neuromuscular diseases. We have developed an experimental model to evaluate the performance of electrical stimulation of the diaphragm in rabbits using single-channel electrodes implanted directly into the muscle. Various current intensities (10, 16, 20, and 26 mA) produced tidal volumes above the baseline value, showing that this model is effective for the study of diaphragm performance at different levels of electrical stimulation


2006 ◽  
Vol 290 (3) ◽  
pp. R766-R772 ◽  
Author(s):  
Michael Kristensen ◽  
Thomas Hansen ◽  
Carsten Juel

Muscle activity is associated with potassium displacements, which may cause fatigue. It was reported previously that the density of the large-conductance Ca2+-dependent K+ (BKCa) channel is higher in the T tubule membrane than in the sarcolemmal membrane and that the opposite is the case for the ATP-sensitive K+ (KATP) channel. In the present experiments, we investigated the subcellular localizations of the strong inward rectifier 2.1 K+ (Kir2.1) channel and the Na+-K+-2Cl− (NKCC)1 cotransporter with Western blot analysis of different muscle fractions. Furthermore, muscle function was studied while trying to manipulate the opening probability or transport capacity of these proteins during electrical stimulation of isolated soleus muscles. All experiments were made with excised muscle from male Wistar rats. Kir2.1 channels were almost undetectable in the sarcolemmal membrane but present in the T tubule membrane, whereas NKCC1 cotransporters were present in the sarcolemmal membrane. For muscles incubated in a buffer containing pinacidil, NS1619, Ba2+, or bumetanide, there was a faster reduction in peak force ( P < 0.05). Furthermore, bumetanide incubation reduced the peak force at the onset of electrical stimulation ( P < 0.05). Thus the effects on muscle force indicate that these drugs can affect K+-transporting proteins and thereby influence K+ accumulation, especially in the T tubules, suggesting that KATP and BKCa channels are responsible for K+ release and decrease in force during repeated muscle contractions, whereas Kir2.1 and NKCC1 may have a role in K+ reuptake.


2010 ◽  
Vol 25 (2) ◽  
pp. 158-167 ◽  
Author(s):  
Jane E. Butler ◽  
Julianne Lim ◽  
Robert B. Gorman ◽  
Claire Boswell-Ruys ◽  
Julian P. Saboisky ◽  
...  

2016 ◽  
Vol 4 (4) ◽  
pp. 47-55 ◽  
Author(s):  
Galina A. Ikoeva ◽  
Igor E. Nikityuk ◽  
Olga I. Kivoenko ◽  
Tatyana R. Moshonkina ◽  
Irina A. Solopova ◽  
...  

Introduction. Rehabilitation of patients with cerebral palsy (CP) remains a very difficult task. Stable and growing movement restrictions in such patients cause a life-long need for treatment and rehabilitation. Neurorehabilitation of children with CP at various stages includes not only traditional physical rehabilitation methods, but also extensive use of robotic mechanotherapy techniques and new technologies in the field of neurophysiology. One of such technology is non-invasive percutaneous electrical stimulation of the spinal cord.Aim of the study: To assess the effect of transcutaneous electrical stimulation of the spinal cord to improve the motor function of children with spastic diplegia using the “Lokomat” robotic mechanotherapy system.Materials and methods. A clinical rehabilitation study of 26 patients aged 6–12 years with CP was conducted. The treatment group included 11 patients who received one course of robotic mechanotherapy using the “Lokomat” system combined with transcutaneous electrical stimulation of the spinal cord. The control group included 15 patients who received one course of robotic mechanotherapy only.Results. A comparative analysis of the two groups based on the results of clinical examinations using specific scales (GMFCS, GMFM-88, Modified Ashworth Scale of Muscle Spasticity), locomotor tests (L-FORCE, L-ROM), and evaluations of muscle activity using electromyography showed that one course of rehabilitation resulted in improvement in motor function in all patients of both groups, but positive dynamics were more significant in the treatment group that underwent percutaneous electrical stimulation of the spinal cord.Conclusion. Based on clinical data, changes in indicators of the locomotor tests L-FORCE and L-ROM, as well as assessment of changes in muscle activity, showed that motor rehabilitation of children with spastic diplegia using the “Lokomat” robotic mechanotherapy system combined with transcutaneous electrical spinal cord stimulation was more effective than robotic mechanotherapy only.


2019 ◽  
Vol 30 (1) ◽  
pp. 391-405 ◽  
Author(s):  
Luca Fornia ◽  
Marco Rossi ◽  
Marco Rabuffetti ◽  
Antonella Leonetti ◽  
Guglielmo Puglisi ◽  
...  

Abstract Dorsal and ventral premotor (dPM and vPM) areas are crucial in control of hand muscles during object manipulation, although their respective role in humans is still debated. In patients undergoing awake surgery for brain tumors, we studied the effect of direct electrical stimulation (DES) of the premotor cortex on the execution of a hand manipulation task (HMt). A quantitative analysis of the activity of extrinsic and intrinsic hand muscles recorded during and in absence of DES was performed. Results showed that DES applied to premotor areas significantly impaired HMt execution, affecting task-related muscle activity with specific features related to the stimulated area. Stimulation of dorsal vPM induced both a complete task arrest and clumsy task execution, characterized by general muscle suppression. Stimulation of ventrocaudal dPM evoked a complete task arrest mainly due to a dysfunctional recruitment of hand muscles engaged in task execution. These results suggest that vPM and dPM contribute differently to the control of hand muscles during object manipulation. Stimulation of both areas showed a significant impact on motor output, although the different effects suggest a stronger relationship of dPM with the corticomotoneuronal circuit promoting muscle recruitment and a role for vPM in supporting sensorimotor integration.


Sign in / Sign up

Export Citation Format

Share Document