Benefits of physiologically variable ventilation over pressure-controlled ventilation: a randomized study in a model of pulmonary fibrosis

Author(s):  
Andre dos Santos Rocha ◽  
Ferenc Peták ◽  
Walid Habre ◽  
Adam Balogh
2021 ◽  
Vol 11 ◽  
Author(s):  
Andre Dos Santos Rocha ◽  
Roberta Südy ◽  
Davide Bizzotto ◽  
Miklos Kassai ◽  
Tania Carvalho ◽  
...  

IntroductionThe advantages of physiologically variable ventilation (PVV) based on a spontaneous breathing pattern have been demonstrated in several respiratory conditions. However, its potential benefits in chronic obstructive pulmonary disease (COPD) have not yet been characterized. We used an experimental model of COPD to compare respiratory function outcomes after 6 h of PVV versus conventional pressure-controlled ventilation (PCV).Materials and MethodsRabbits received nebulized elastase and lipopolysaccharide throughout 4 weeks. After 30 days, animals were anesthetized, tracheotomized, and randomized to receive 6 h of physiologically variable (n = 8) or conventional PCV (n = 7). Blood gases, respiratory mechanics, and chest fluoroscopy were assessed hourly.ResultsAfter 6 h of ventilation, animals receiving variable ventilation demonstrated significantly higher oxygenation index (PaO2/FiO2 441 ± 37 (mean ± standard deviation) versus 354 ± 61 mmHg, p < 0.001) and lower respiratory elastance (359 ± 36 versus 463 ± 81 cmH2O/L, p < 0.01) than animals receiving PCV. Animals ventilated with the variable mode also presented less lung derecruitment (decrease in lung aerated area, –3.4 ± 9.9 versus –17.9 ± 6.7%, p < 0.01) and intrapulmonary shunt fraction (9.6 ± 4.1 versus 17.0 ± 5.8%, p < 0.01).ConclusionPVV applied to a model of COPD improved oxygenation, respiratory mechanics, lung aeration, and intrapulmonary shunt fraction compared to conventional ventilation. A reduction in alveolar derecruitment and lung tissue stress leading to better aeration and gas exchange may explain the benefits of PVV.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Andre Dos Santos Rocha ◽  
Gergely H. Fodor ◽  
Miklos Kassai ◽  
Loic Degrugilliers ◽  
Sam Bayat ◽  
...  

Abstract Background Benefits of variable mechanical ventilation based on the physiological breathing pattern have been observed both in healthy and injured lungs. These benefits have not been characterized in pediatric models and the effect of this ventilation mode on regional distribution of lung inflammation also remains controversial. Here, we compare structural, molecular and functional outcomes reflecting regional inflammation between PVV and conventional pressure-controlled ventilation (PCV) in a pediatric model of healthy lungs and acute respiratory distress syndrome (ARDS). Methods New-Zealand White rabbit pups (n = 36, 670 ± 20 g [half-width 95% confidence interval]), with healthy lungs or after induction of ARDS, were randomized to five hours of mechanical ventilation with PCV or PVV. Regional lung aeration, inflammation and perfusion were assessed using x-ray computed tomography, positron-emission tomography and single-photon emission computed tomography, respectively. Ventilation parameters, blood gases and respiratory tissue elastance were recorded hourly. Results Mechanical ventilation worsened respiratory elastance in healthy and ARDS animals ventilated with PCV (11 ± 8%, 6 ± 3%, p < 0.04), however, this trend was improved by PVV (1 ± 4%, − 6 ± 2%). Animals receiving PVV presented reduced inflammation as assessed by lung normalized [18F]fluorodeoxyglucose uptake in healthy (1.49 ± 0.62 standardized uptake value, SUV) and ARDS animals (1.86 ± 0.47 SUV) compared to PCV (2.33 ± 0.775 and 2.28 ± 0.3 SUV, respectively, p < 0.05), particularly in the well and poorly aerated lung zones. No benefit of PVV could be detected on regional blood perfusion or blood gas parameters. Conclusions Variable ventilation based on a physiological respiratory pattern, compared to conventional pressure-controlled ventilation, reduced global and regional inflammation in both healthy and injured lungs of juvenile rabbits.


2021 ◽  
Vol 10 (6) ◽  
pp. 1276
Author(s):  
Volker Schick ◽  
Fabian Dusse ◽  
Ronny Eckardt ◽  
Steffen Kerkhoff ◽  
Simone Commotio ◽  
...  

For perioperative mechanical ventilation under general anesthesia, modern respirators aim at combining the benefits of pressure-controlled ventilation (PCV) and volume-controlled ventilation (VCV) in modes typically named “volume-guaranteed” or “volume-targeted” pressure-controlled ventilation (PCV-VG). This systematic review and meta-analysis tested the hypothesis that PCV-VG modes of ventilation could be beneficial in terms of improved airway pressures (Ppeak, Pplateau, Pmean), dynamic compliance (Cdyn), or arterial blood gases (PaO2, PaCO2) in adults undergoing elective surgery under general anesthesia. Three major medical electronic databases were searched with predefined search strategies and publications were systematically evaluated according to the Cochrane Review Methods. Continuous variables were tested for mean differences using the inverse variance method and 95% confidence intervals (CI) were calculated. Based on the assumption that intervention effects across studies were not identical, a random effects model was chosen. Assessment for heterogeneity was performed with the χ2 test and the I2 statistic. As primary endpoints, Ppeak, Pplateau, Pmean, Cdyn, PaO2, and PaCO2 were evaluated. Of the 725 publications identified, 17 finally met eligibility criteria, with a total of 929 patients recruited. Under supine two-lung ventilation, PCV-VG resulted in significantly reduced Ppeak (15 studies) and Pplateau (9 studies) as well as higher Cdyn (9 studies), compared with VCV [random effects models; Ppeak: CI −3.26 to −1.47; p < 0.001; I2 = 82%; Pplateau: −3.12 to −0.12; p = 0.03; I2 = 90%; Cdyn: CI 3.42 to 8.65; p < 0.001; I2 = 90%]. For one-lung ventilation (8 studies), PCV-VG allowed for significantly lower Ppeak and higher PaO2 compared with VCV. In Trendelenburg position (5 studies), this effect was significant for Ppeak only. This systematic review and meta-analysis demonstrates that volume-targeting, pressure-controlled ventilation modes may provide benefits with respect to the improved airway dynamics in two- and one-lung ventilation, and improved oxygenation in one-lung ventilation in adults undergoing elective surgery.


2011 ◽  
Vol 110 (5) ◽  
pp. 1374-1383 ◽  
Author(s):  
Gaetano Perchiazzi ◽  
Christian Rylander ◽  
Antonio Vena ◽  
Savino Derosa ◽  
Debora Polieri ◽  
...  

During positive-pressure ventilation parenchymal deformation can be assessed as strain (volume increase above functional residual capacity) in response to stress (transpulmonary pressure). The aim of this study was to explore the relationship between stress and strain on the regional level using computed tomography in anesthetized healthy pigs in two postures and two patterns of breathing. Airway opening and esophageal pressures were used to calculate stress; change of gas content as assessed from computed tomography was used to calculate strain. Static stress-strain curves and dynamic strain-time curves were constructed, the latter during the inspiratory phase of volume and pressure-controlled ventilation, both in supine and prone position. The lung was divided into nondependent, intermediate, dependent, and central regions: their curves were modeled by exponential regression and examined for statistically significant differences. In all the examined regions, there were strong but different exponential relations between stress and strain. During mechanical ventilation, the end-inspiratory strain was higher in the dependent than in the nondependent regions. No differences between volume- and pressure-controlled ventilation were found. However, during volume control ventilation, prone positioning decreased the end-inspiratory strain of dependent regions and increased it in nondependent regions, resulting in reduced strain gradient. Strain is inhomogeneously distributed within the healthy lung. Prone positioning attenuates differences between dependent and nondependent regions. The regional effects of ventilatory mode and body positioning should be further explored in patients with acute lung injury.


2013 ◽  
Vol 70 (1) ◽  
pp. 9-15
Author(s):  
Maja Surbatovic ◽  
Zoran Vesic ◽  
Dragan Djordjevic ◽  
Sonja Radakovic ◽  
Snjezana Zeba ◽  
...  

Background/Aim: Laparoscopic cholecystectomy is considered to be the gold standard for laparoscopic surgical procedures. In ASA III patients with concomitant respiratory diseases, however, creation of pneumoperitoneum and the position of patients during surgery exert additional negative effect on intraoperative respiratory function, thus making a higher challenge for the anesthesiologist than for the surgeon. The aim of this study was to compare the effect of intermittent positive pressure ventilation (IPPV) and pressure controlled ventilation (PCV) during general anesthesia on respiratory function in ASA III patients submitted to laparoscopic cholecystectomy. Methods. The study included 60 patients randomized into two groups depending on the mode of ventilation: IPPV or PCV. Respiratory volume (VT), peak inspiratory pressure (PIP), compliance (C), end-tidal CO2 pressure (PETCO2), oxygen saturation (SpO2), partial pressures of O2, CO2 (PaO2 and PaCO2) and pH of arterial blood were recorded within four time intervals. Results. There were no statistically significant differences in VT, SpO2, PaO2, PaCO2 and pH values neither within nor between the two groups. In time interval t1 there were no statistically significant differences in PIP, C, PETCO2 values between the IPPV and the PCV group. But, in the next three time intervals there was a difference in PIP, C, and PETCO2 values between the two groups which ranged from statistically significant to highly significant; PIP was lower, C and PETCO2 were higher in the PCV group. Conclusion. Pressure controlled ventilation better maintains stability regarding intraoperative ventilatory parameters in ASA III patients with concomitant respiratory diseases during laparoscopic cholecystectomy.


1993 ◽  
Vol 21 (8) ◽  
pp. 1143-1148 ◽  
Author(s):  
JAVIER MUÑOZ ◽  
JOSE EUGENIO GUERRERO ◽  
JOSE LUIS ESCALANTE ◽  
RICARDO PALOMINO ◽  
BRAULIO DE LA CALLE

Sign in / Sign up

Export Citation Format

Share Document