scholarly journals Shifting patterns of natural variation in the nuclear genome of caenorhabditis elegans

2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Eleanne Solorzano ◽  
Kazufusa Okamoto ◽  
Pushpa Datla ◽  
Way Sung ◽  
RD Bergeron ◽  
...  
2021 ◽  
Author(s):  
Janneke Wit ◽  
Steffen R. Hahnel ◽  
Briana C. Rodriguez ◽  
Erik Andersen

Treatment of parasitic nematode infections depends primarily on the use of anthelmintics. However, this drug arsenal is limited, and resistance against most anthelmintics is widespread. Emodepside is a new anthelmintic drug effective against gastrointestinal and filarial nematodes. Nematodes that are resistant to other anthelmintic drug classes are susceptible to emodepside, indicating that the emodepside mode of action is distinct from previous anthelmintics. The laboratory-adapted Caenorhabditis elegans strain N2 is sensitive to emodepside, and genetic selection and in vitro experiments implicated slo-1, a BK potassium channel gene, in emodepside mode of action. In an effort to understand how natural populations will respond to emodepside, we measured brood sizes and developmental rates of wild C. elegans strains after exposure to the drug and found natural variation across the species. Some variation in emodepside responses can be explained by natural differences in slo-1. This result suggests that other genes in addition to slo-1 underlie emodepside resistance in wild C. elegans strains. Additionally, all assayed strains have higher offspring production in low concentrations of emodepside (a hormetic effect), which could impact treatment strategies. We find that natural variation affects emodepside sensitivity, supporting the suitability of C. elegans as a model system to study emodepside responses across parasitic nematodes.


2018 ◽  
Author(s):  
Clotilde Gimond ◽  
Anne Vielle ◽  
Nuno Silva-Soares ◽  
Stefan Zdraljevic ◽  
Patrick T. McGrath ◽  
...  

ABSTRACTSperm morphology is critical for sperm competition and thus for reproductive fitness. In the male-hermaphrodite nematode Caenorhabditis elegans, sperm size is a key feature of sperm competitive ability. Yet despite extensive research, the molecular mechanisms regulating C. elegans sperm size and the genetic basis underlying its natural variation remain unknown. Examining 97 genetically distinct C. elegans strains, we observe significant heritable variation in male sperm size but genome-wide association mapping did not yield any QTL (Quantitative Trait Loci). While we confirm larger male sperm to consistently outcompete smaller hermaphrodite sperm, we find natural variation in male sperm size to poorly predict male fertility and competitive ability. In addition, although hermaphrodite sperm size also shows significant natural variation, male and hermaphrodite sperm size do not correlate, implying a sex-specific genetic regulation of sperm size. To elucidate the molecular basis of intraspecific sperm size variation, we focused on recently diverged laboratory strains, which evolved extreme sperm size differences. Using mutants and quantitative complementation tests, we demonstrate that variation in the gene nurf-1 – previously shown to underlie the evolution of improved hermaphrodite reproduction – also explains the evolution of reduced male sperm size. This result illustrates how adaptive changes in C. elegans hermaphrodite function can cause the deterioration of a male-specific fitness trait due to a sexually antagonistic variant, representing an example of intralocus sexual conflict with resolution at the molecular level. Our results further provide first insights into the genetic determinants of C. elegans sperm size, pointing at an involvement of the NURF chromatin remodelling complex.


Genetics ◽  
2020 ◽  
Vol 216 (1) ◽  
pp. 145-157
Author(s):  
Tiffany Baiocchi ◽  
Kyle Anesko ◽  
Nathan Mercado ◽  
Heenam Park ◽  
Kassandra Kin ◽  
...  

Chemosensation plays a role in the behaviors and life cycles of numerous organisms, including nematodes. Many guilds of nematodes exist, ranging from the free-living Caenorhabditis elegans to various parasitic species such as entomopathogenic nematodes (EPNs), which are parasites of insects. Despite ecological differences, previous research has shown that both EPNs and C. elegans respond to prenol (3-methyl-2-buten-1-ol), an odor associated with EPN infections. However, it is unclear how C. elegans responds to prenol. By utilizing natural variation and genetic neuron ablation to investigate the response of C. elegans to prenol, we found that the AWC neurons are involved in the detection of prenol and that several genes (including dcap-1, dcap-2, and clec-39) influence response to this odorant. Furthermore, we identified that the response to prenol is mediated by the canonically proposed pathway required for other AWC-sensed attractants. However, upon testing genetically diverse isolates, we found that the response of some strains to prenol differed from their response to isoamyl alcohol, suggesting that the pathways mediating response to these two odorants may be genetically distinct. Further, evaluations leveraging natural variation and genome wide association revealed specific genes that influence nematode behavior and provide a foundation for future studies to better understand the role of prenol in nematode behavioral ecology.


Genetics ◽  
2019 ◽  
Vol 213 (2) ◽  
pp. 615-632 ◽  
Author(s):  
Clotilde Gimond ◽  
Anne Vielle ◽  
Nuno Silva-Soares ◽  
Stefan Zdraljevic ◽  
Patrick T. McGrath ◽  
...  

Author(s):  
Anna Nowicka ◽  
Martin Kovacik ◽  
Barbara Tokarz ◽  
Jan Vrána ◽  
Yueqi Zhang ◽  
...  

Abstract Seeds are complex biological systems comprising three genetically distinct tissues: embryo, endosperm, and maternal tissues (including seed coats and pericarp) nested inside one another. Cereal grains represent a special type of seeds, with the largest part formed by the endosperm, a specialized triploid tissue ensuring embryo protection and nourishment. We investigated dynamic changes in DNA content in three of the major seed tissues from the time of pollination up to the dry seed. We show that the cell cycle is under strict developmental control in different seed compartments. After an initial wave of active cell division, cells switch to endocycle and most endoreduplication events are observed in the endosperm and seed maternal tissues. Using different barley cultivars, we show that there is natural variation in the kinetics of this process. During the terminal stages of seed development, specific and selective loss of endoreduplicated nuclei occurs in the endosperm. This is accompanied by reduced stability of the nuclear genome, progressive loss of cell viability, and finally programmed cell death. In summary, our study shows that endopolyploidization and cell death are linked phenomena that frame barley grain development.


2018 ◽  
Author(s):  
Keir M. Balla ◽  
Vladimir Lažetić ◽  
Emily Troemel

AbstractNatural genetic variation can determine the outcome of an infection, and often reflects the co-evolutionary battle between hosts and pathogens. We previously found that a natural variant of the nematode Caenorhabditis elegans from Hawaii (HW) has increased resistance against natural microsporidian pathogens in the Nematocida genus, when compared to the standard laboratory strain of N2. In particular, HW animals can clear infection, while N2 animals cannot. In addition, HW animals have lower levels of intracellular colonization of Nematocida compared to N2. Here we investigate how this natural variation in resistance relates to autophagy. We found that there is much better targeting of autophagy-related machinery to parasites under conditions where they are cleared. In particular, ubiquitin targeting to Nematocida cells correlates very well with their subsequent clearance in terms of timing, host strain and age, as well as Nematocida species. Furthermore, clearance correlates with targeting of the LGG-2/LC3 autophagy protein to parasite cells, with HW animals having much more efficient targeting of LGG-2 to parasite cells than N2 animals. Surprisingly, however, we found that lgg-2 is not required to clear infection. Instead we found that loss of lgg-2 leads to increased intracellular colonization in the HW background, although interestingly, it does not affect colonization in the N2 background. Altogether our results suggest that there is natural genetic variation in an lgg-2-dependent process that regulates intracellular levels of microsporidia at a very early stage of infection prior to clearance.


Sign in / Sign up

Export Citation Format

Share Document