viral susceptibility
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 43)

H-INDEX

18
(FIVE YEARS 5)

Author(s):  
Dunia Jawdat ◽  
Ali Hajeer ◽  
Salam Massadeh ◽  
Nora Aljawini ◽  
Malak S. Abedalthagafi ◽  
...  

Abstract Background Disease severity among patients infected with SARS-CoV-2 varies remarkably. Preliminary studies reported that the ABO blood group system confers differential viral susceptibility and disease severity caused by SARS-CoV-2. Thus, differences in ABO blood group phenotypes may partly explain the observed heterogeneity in COVID-19 severity patterns, and could help identify individuals at increased risk. Herein, we explored the association between ABO blood group phenotypes and COVID-19 susceptibility and severity in a Saudi Arabian cohort. Methods In this retrospective cohort study, we performed ABO typing on a total of 373 Saudi patients infected with SARS-CoV-2 and conducted association analysis between ABO blood group phenotype and COVID-19 infection severity. We then performed gender-stratified analysis by dividing the participating patients into two groups by gender, and classified them according to age. Results The frequencies of blood group phenotypes A, B, AB and O were 27.3, 23.6, 5.4 and 43.7%, respectively. We found that blood group phenotype O was associated with a lower risk of testing positive for COVID-19 infection (OR 0.76 95% CI 0.62–0.95, p = 0.0113), while blood group phenotype B was associated with higher odds of testing positive (OR 1.51 95% CI 1.17–1.93, p = 0.0009). However, blood group phenotype B was associated with increased risk in the mild and moderate group but not the severe COVID-19 infection group. Blood group phenotype O was protective in all severity groups. Conclusion Our findings provide evidence that blood group phenotype B is a risk for COVID-19 disease while blood group phenotype O is protective from COVID-19 infection. However, further studies are necessary to validate these associations in a larger sample size and among individuals of different ethnic groups.


2021 ◽  
Vol 218 (12) ◽  
Author(s):  
Jie Chen ◽  
Huie Jing ◽  
Andrea Martin-Nalda ◽  
Paul Bastard ◽  
Jacques G. Rivière ◽  
...  

Enterovirus (EV) infection rarely results in life-threatening infection of the central nervous system. We report two unrelated children with EV30 and EV71 rhombencephalitis. One patient carries compound heterozygous TLR3 variants (loss-of-function F322fs2* and hypomorphic D280N), and the other is homozygous for an IFIH1 variant (loss-of-function c.1641+1G>C). Their fibroblasts respond poorly to extracellular (TLR3) or intracellular (MDA5) poly(I:C) stimulation. The baseline (TLR3) and EV-responsive (MDA5) levels of IFN-β in the patients’ fibroblasts are low. EV growth is enhanced at early and late time points of infection in TLR3- and MDA5-deficient fibroblasts, respectively. Treatment with exogenous IFN-α2b before infection renders both cell lines resistant to EV30 and EV71, whereas post-infection treatment with IFN-α2b rescues viral susceptibility fully only in MDA5-deficient fibroblasts. Finally, the poly(I:C) and viral phenotypes of fibroblasts are rescued by the expression of WT TLR3 or MDA5. Human TLR3 and MDA5 are critical for cell-intrinsic immunity to EV, via the control of baseline and virus-induced type I IFN production, respectively.


2021 ◽  
Author(s):  
Sebastian Freeman ◽  
Karen Kibrler ◽  
Zachary Lipsky ◽  
Sha Jin ◽  
Guy German ◽  
...  

Abstract The ongoing COVID-19 global pandemic has necessitated evaluating various disinfection technologies for reducing viral transmission in public settings. Ultraviolet (UV) radiation can inactivate pathogens and viruses but more insight is needed into the performance of different UV wavelengths and their applications. We observed greater than a 3-log reduction of SARS-CoV-2 infectivity with a dose of 12.5 mJ/cm2 of 254 nm UV light when the viruses were suspended in PBS, while a dose of 25 mJ/cm2 was necessary to achieve a similar reduction when they were in an EMEM culture medium containing 2%(v/v) FBS, highlighting the critical effect of media in which the virus is suspended, given that SARS-CoV-2 is always aerosolized when airborne or deposited on a surface. It was found that SARS-CoV-2 susceptibility (a measure of the effectiveness of the UV light) in a buffer such as PBS was 4.4-fold greater than that in a cell culture medium. Furthermore, we discovered the attenuation of UVC disinfection by amino acids, vitamins, and niacinamide, highlighting the importance of determining UVC dosages under a condition close to aerosols that wrap the viruses. We developed a disinfection model to determine the effect of the environment on UVC effectiveness with three different wavelengths, 222 nm, 254 nm, and 265 nm. An inverse correlation between the liquid absorbance and the viral susceptibility was observed. We found that 222 nm light was most effective at reducing viral infectivity in low absorbing liquids such as PBS, whereas 265 nm light was most effective in high absorbing liquids such as cell culture medium. Viral susceptibility was further decreased in N95 masks with 222 nm light being the most effective. The safety of 222 nm was also studied. We detected changes to the mechanical properties of the stratum corneum of human skins when the 222 nm accumulative exposure exceeded 50 J/cm2.The findings highlight the need to evaluate each UV for a given application, as well as limiting the dose to the lowest dose necessary to avoid unnecessary exposure to the public.


2021 ◽  
Author(s):  
Yan Wang ◽  
GuanQin Ma ◽  
Xue-Feng Wang ◽  
Lei Na ◽  
Xing Guo ◽  
...  

The Nrf2/Keap1 axis plays a complex role in viral susceptibility, virus-associated inflammation and immune regulation. However, whether or how the Nrf2/Keap1 axis is involved in the interactions between equine lentiviruses and their hosts remains unclear. Here, we demonstrate that the Nrf2/Keap1 axis was activated during EIAV infection. Mechanistically, EIAV-Rev competitively binds to Keap1 and releases Nrf2 from Keap1-mediated repression, leading to the accumulation of Nrf2 in the nucleus and promoting Nrf2 responsive genes transcription. Subsequently, we demonstrated that the Nrf2/Keap1 axis represses EIAV replication via two independent molecular mechanisms: directly increasing antioxidant enzymes to promote effective cellular resistance against EIAV infection, and repression of Rev-mediated RNA transport through direct interaction between Keap1 and Rev. Together, these data suggest that activation of the Nrf2/Keap1 axis mediates a passive defensive response to combat EIAV infection. The Nrf2/Keap1 axis could be a potential target for developing the strategies for combating EIAV infection.


2021 ◽  
Vol 41 (7) ◽  
pp. 1446-1456
Author(s):  
Christopher James Arthur Duncan ◽  
Sophie Hambleton

AbstractSTAT2 is distinguished from other STAT family members by its exclusive involvement in type I and III interferon (IFN-I/III) signaling pathways, and its unique behavior as both positive and negative regulator of IFN-I signaling. The clinical relevance of these opposing STAT2 functions is exemplified by monogenic diseases of STAT2. Autosomal recessive STAT2 deficiency results in heightened susceptibility to severe and/or recurrent viral disease, whereas homozygous missense substitution of the STAT2-R148 residue is associated with severe type I interferonopathy due to loss of STAT2 negative regulation. Here we review the clinical presentation, pathogenesis, and management of these disorders of STAT2.


2021 ◽  
Author(s):  
Daniel Poston ◽  
Yiska Weisblum ◽  
Alvaro Hobbs ◽  
Paul D Bieniasz

Emerging zoonotic viral pathogens threaten global health and there is an urgent need to discover host and viral determinants influencing infection. We performed a loss-of-function genome-wide CRISPR screen in a human lung cell line using HCoV-OC43, a human betacoronavirus. One candidate gene, VPS29, was required for infection by HCoV-OC43, SARS-CoV-2, other endemic and pandemic threat coronaviruses as well as ebolavirus. However, VPS29 deficiency had no effect on certain other viruses that enter cells via endosomes and had an opposing, enhancing effect on influenza A virus infection. VPS29 deficiency caused changes endosome morphology, and acidity and attenuated the activity of endosomal proteases. These changes in endosome properties caused incoming coronavirus, but not influenza virus particles, to become entrapped therein. Overall, these data show how host regulation of endosome characteristics can influence viral susceptibility and identify a host pathway that could serve as a pharmaceutical target for intervention in zoonotic viral diseases.


2021 ◽  
Author(s):  
Mohammed Abdulhasan ◽  
Ximena Ruden ◽  
Benjamin Rappolee ◽  
Sudipta Dutta ◽  
Katherine Gurdziel ◽  
...  

Abstract Stress-induced changes in viral receptor and susceptibility gene expression were measured in embryonic stem cells (ESC) and differentiated progeny. Rex1 promoter-Red Fluorescence Protein reporter ESC were tested by RNAseq after 72hr exposures to control hyperosmotic sorbitol under stemness culture (NS) to quantify stress forced differentiation (SFD) transcriptomic programs. Control ESC cultured with stemness factor removal produced normal differentiation (ND). Bulk RNAseq transcriptomic analysis showed significant upregulation of two genes involved in Covid-19 cell uptake, Vimentin (VIM) and Transmembrane Serine Protease 2 (TMPRSS2). SFD increased the hepatitis A virus receptor (Havcr1) and the transplacental Herpes simplex 1 (HSV1) virus receptor (Pvrl1) compared with ESC undergoing ND. Several other coronavirus receptors, Glutamyl Aminopep tidase (ENPEP) and Dipeptidyl Peptidase 4 (DPP4) were upregulated significantly in SFD>ND. Although stressed ESC are more susceptible to infection due to increased expression of viral receptors and decreased resistance, the necessary Covid-19 receptor, angiotensin converting enzyme (ACE)2, was not expressed in our experiments. TMPRSS2, ENPEP, and DPP4 mediate Coronavirus uptake, but are also markers of extra-embry onic endoderm (XEN), which arise from ESC undergoing ND or SFD. Mouse and human ESCs differentiated to XEN increase TMPRSS2 and other Covid-19 uptake-mediating gene expression, but only some lines express ACE2. Covid-19 susceptibility appears to be genotype-specific and not ubiquitous. Of the 30 gene ontology (GO) groups for viral susceptibility, 15 underwent significant stress-forced changes. Of these, 4 GO groups mediated negative viral regulation and most genes in these increase in ND and decrease with SFD, thus suggesting that stressed increases ESC viral susceptibility.


2021 ◽  
Author(s):  
Mark G. Sterken ◽  
Lisa van Sluijs ◽  
Yiru A. Wang ◽  
Wannisa Ritmahan ◽  
Mitra L. Gultom ◽  
...  

Host-pathogen interactions play a major role in evolutionary selection and shape natural genetic variation. The genetically distinct Caenorhabditis elegans strains, Bristol N2 and Hawaiian CB4856, are differentially susceptible to the Orsay virus (OrV). Here we report the dissection of the genetic architecture of susceptibility to OrV infection. We compare OrV infection in the relatively resistant wild-type CB4856 strain to the more susceptible canonical N2 strain. To gain insight into the genetic architecture of viral susceptibility, 52 fully sequenced recombinant inbred lines (CB4856 x N2 RILs) were exposed to OrV. This led to the identification of two loci on chromosome IV associated with OrV resistance. To verify the two loci and gain additional insight into the genetic architecture controlling virus infection, introgression lines (ILs) that together cover chromosome IV, were exposed to OrV. Of the 27 ILs used, 17 had an CB4856 introgression in an N2 background and 10 had an N2 introgression in a CB4856 background. Infection of the ILs confirmed and fine-mapped the locus underlying variation in OrV susceptibility and we found that a single nucleotide polymorphism in cul-6 may contribute to the difference in OrV susceptibility between N2 and CB4856. An allele swap experiment showed the strain CB4856 became as susceptible as the N2 strain by having an N2 cul-6 allele, although having the CB4856 cul-6 allele did not increase resistance in N2. Additionally, we found that multiple strains with non-overlapping introgressions showed a distinct infection phenotype from the parental strain, indicating that there are punctuated locations on chromosome IV determining OrV susceptibility. Thus, our findings reveal the genetic complexity of OrV susceptibility in C. elegans and suggest that viral susceptibility is governed by multiple genes. Importance Genetic variation determines the viral susceptibility of hosts. Yet, pinpointing which genetic variants determine viral susceptibility remains challenging. Here, we have exploited the genetic tractability of the model organism C. elegans to dissect the genetic architecture of Orsay virus infection. Our results provide novel insight into natural determinants of Orsay virus infection.


2021 ◽  
Author(s):  
Kwang-Soo Lyoo ◽  
Yoonhwan Yeo ◽  
Sung-Geun Lee ◽  
Minjoo Yeom ◽  
Eun-Hye Bae ◽  
...  

Abstract The coronavirus disease 19 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in unprecedented challenges to healthcare worldwide. In particular, the anthroponotic transmission of human coronaviruses has become a common concern among pet owners. Here, we experimentally inoculated beagle dogs with SARS-CoV-2 or Middle East respiratory syndrome (MERS)-CoV to compare the viral susceptibility and pathogenicity. The dogs exhibited weight loss and increased body temperature and shed the viruses in nasal secretion, faeces, and urine. Mild interstitial pneumonia lesions were observed in the lung tissues of infected dogs. Additionally, clinical characteristics of SARS-CoV-2 infection, such as increased lactate dehydrogenase levels was observed in the current study.


Sign in / Sign up

Export Citation Format

Share Document