scholarly journals Expression proteomics of UPF1 knockdown in HeLa cells reveals autoregulation of hnRNP A2/B1 mediated by alternative splicing resulting in nonsense-mediated mRNA decay

BMC Genomics ◽  
2010 ◽  
Vol 11 (1) ◽  
Author(s):  
Nicholas J McGlincy ◽  
Lit-Yeen Tan ◽  
Nicodeme Paul ◽  
Mihaela Zavolan ◽  
Kathryn S Lilley ◽  
...  
2008 ◽  
Vol 28 (13) ◽  
pp. 4320-4330 ◽  
Author(s):  
Arneet L. Saltzman ◽  
Yoon Ki Kim ◽  
Qun Pan ◽  
Matthew M. Fagnani ◽  
Lynne E. Maquat ◽  
...  

ABSTRACT Alternative splicing (AS) can regulate gene expression by introducing premature termination codons (PTCs) into spliced mRNA that subsequently elicit transcript degradation by the nonsense-mediated mRNA decay (NMD) pathway. However, the range of cellular functions controlled by this process and the factors required are poorly understood. By quantitative AS microarray profiling, we find that there are significant overlaps among the sets of PTC-introducing AS events affected by individual knockdown of the three core human NMD factors, Up-Frameshift 1 (UPF1), UPF2, and UPF3X/B. However, the levels of some PTC-containing splice variants are less or not detectably affected by the knockdown of UPF2 and/or UPF3X, compared with the knockdown of UPF1. The intron sequences flanking the affected alternative exons are often highly conserved, suggesting important regulatory roles for these AS events. The corresponding genes represent diverse cellular functions, and surprisingly, many encode core spliceosomal proteins and assembly factors. We further show that conserved, PTC-introducing AS events are enriched in genes that encode core spliceosomal proteins. Where tested, altering the expression levels of these core spliceosomal components affects the regulation of PTC-containing splice variants from the corresponding genes. Together, our results show that AS-coupled NMD can have different UPF factor requirements and is likely to regulate many general components of the spliceosome. The results further implicate general spliceosomal components in AS regulation.


Gene ◽  
2007 ◽  
Vol 400 (1-2) ◽  
pp. 131-139 ◽  
Author(s):  
Xiaomin Zhang ◽  
Gohar Azhar ◽  
Chris Huang ◽  
Cunqi Cui ◽  
Ying Zhong ◽  
...  

2020 ◽  
Vol 21 (4) ◽  
pp. 1335 ◽  
Author(s):  
Jean-Marie Lambert ◽  
Mohamad Omar Ashi ◽  
Nivine Srour ◽  
Laurent Delpy ◽  
Jérôme Saulière

The presence of premature termination codons (PTCs) in transcripts is dangerous for the cell as they encode potentially deleterious truncated proteins that can act with dominant-negative or gain-of-function effects. To avoid the synthesis of these shortened polypeptides, several RNA surveillance systems can be activated to decrease the level of PTC-containing mRNAs. Nonsense-mediated mRNA decay (NMD) ensures an accelerated degradation of mRNAs harboring PTCs by using several key NMD factors such as up-frameshift (UPF) proteins. Another pathway called nonsense-associated altered splicing (NAS) upregulates transcripts that have skipped disturbing PTCs by alternative splicing. Thus, these RNA quality control processes eliminate abnormal PTC-containing mRNAs from the cells by using positive and negative responses. In this review, we describe the general mechanisms of NMD and NAS and their respective involvement in the decay of aberrant immunoglobulin and TCR transcripts in lymphocytes.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1299 ◽  
Author(s):  
James P. B. Lloyd

Nonsense-mediated mRNA decay is a eukaryotic pathway that degrades transcripts with premature termination codons (PTCs). In most eukaryotes, thousands of transcripts are degraded by NMD, including many important regulators of development and stress response pathways. Transcripts can be targeted to NMD by the presence of an upstream ORF or by introduction of a PTC through alternative splicing. Many factors involved in the recognition of PTCs and the destruction of NMD targets have been characterized. While some are highly conserved, others have been repeatedly lost in eukaryotic lineages. Here, I outline the factors involved in NMD, our current understanding of their interactions and how they have evolved. I outline a classification system to describe NMD pathways based on the presence/absence of key NMD factors. These types of NMD pathways exist in multiple different lineages, indicating the plasticity of the NMD pathway through recurrent losses of NMD factors during eukaryotic evolution. By classifying the NMD pathways in this way, gaps in our understanding are revealed, even within well studied organisms. Finally, I discuss the likely driving force behind the origins of the NMD pathway before the appearance of the last eukaryotic common ancestor: transposable element expansion and the consequential origin of introns.


Sign in / Sign up

Export Citation Format

Share Document