last eukaryotic common ancestor
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 14)

H-INDEX

9
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Skylar I Dewees ◽  
Romana Vargova ◽  
Katherine R Hardin ◽  
Rachel E Turn ◽  
Saroja Devi ◽  
...  

The ARF family of regulatory GTPases is ancient, with 16 members predicted to have been present in the last eukaryotic common ancestor. Our phylogenetic profiling of paralogs in diverse species identified four family members whose presence correlates with that of a cilium/flagellum: ARL3, ARL6, ARL13, and ARL16. No prior evidence links ARL16 to cilia or other cell functions, despite its presence throughout eukaryotes. Deletion of ARL16 in MEFs results in decreased ciliogenesis yet increased ciliary length. We also found Arl16 KO in MEFs to alter ciliary protein content, including loss of ARL13B, ARL3, INPP5E, and the IFT-A core component IFT140. Instead, both INPP5E and IFT140 accumulate at the Golgi in Arl16 KO lines, while other IFT proteins do not, suggesting a specific defect in traffic from Golgi to cilia. We propose that ARL16 regulates a Golgi-cilia traffic pathway and is required specifically in the export of IFT140 and INPP5E from the Golgi.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Sabeen Survery ◽  
Fredrik Hurtig ◽  
Syed Razaul Haq ◽  
Jens Eriksson ◽  
Lionel Guy ◽  
...  

AbstractIt is now widely accepted that the first eukaryotic cell emerged from a merger of an archaeal host cell and an alphaproteobacterium. However, the exact sequence of events and the nature of the cellular biology of both partner cells is still contentious. Recently the structures of profilins from some members of the newly discovered Asgard superphylum were determined. In addition, it was found that these profilins inhibit eukaryotic rabbit actin polymerization and that this reaction is regulated by phospholipids. However, the interaction with polyproline repeats which are known to be crucial for the regulation of profilin:actin polymerization was found to be absent for these profilins and was thus suggested to have evolved later in the eukaryotic lineage. Here, we show that Heimdallarchaeota LC3, a candidate phylum within the Asgard superphylum, encodes a putative profilin (heimProfilin) that interacts with PIP2 and its binding is regulated by polyproline motifs, suggesting an origin predating the rise of the eukaryotes. More precisely, we determined the 3D-structure of Heimdallarchaeota LC3 profilin and show that this profilin is able to: i) inhibit eukaryotic actin polymerization in vitro; ii) bind to phospholipids; iii) bind to polyproline repeats from enabled/vasodilator‐stimulated phosphoprotein; iv) inhibit actin from Heimdallarchaeota from polymerizing into filaments. Our results therefore provide hints of the existence of a complex cytoskeleton already in last eukaryotic common ancestor.


2021 ◽  
Author(s):  
Celestine N Chi ◽  
Ravi Teja Inturi ◽  
Sandra Martinez Lara ◽  
Mahmoud Darweesh

The emergence of the first eukaryotic cell was preceded by evolutionary events which are still highly debatable. Recently, comprehensive metagenomics analysis has uncovered that the Asgard super-phylum is the closest yet known archaea host of eukaryotes. However, it remains to be established if a large number of eukaryotic signature proteins predicated to be encoded by the Asgard super-phylum are functional at least, in the context of a eukaryotic cell. Here, we determined the three-dimensional structure of profilin from Thorarchaeota by nuclear magnetic resonance spectroscopy and show that this profilin has a rigid core with a flexible N-terminus which was previously implicated in polyproline binding. In addition, we also show that thorProfilin co-localizes with eukaryotic actin in cultured HeLa cells. This finding reaffirm the notion that Asgardean encoded proteins possess eukaryotic-like characteristics and strengthen likely existence of a complex cytoskeleton already in a last eukaryotic common ancestor


Author(s):  
Alexandr A. Makarov ◽  
Norma E. Padilla-Mejia ◽  
Mark C. Field

The nuclear pore complex (NPC) is responsible for transport between the cytoplasm and nucleoplasm and one of the more intricate structures of eukaryotic cells. Typically composed of over 300 polypeptides, the NPC shares evolutionary origins with endo-membrane and intraflagellar transport system complexes. The modern NPC was fully established by the time of the last eukaryotic common ancestor and, hence, prior to eukaryote diversification. Despite the complexity, the NPC structure is surprisingly flexible with considerable variation between lineages. Here, we review diversification of the NPC in major taxa in view of recent advances in genomic and structural characterisation of plant, protist and nucleomorph NPCs and discuss the implications for NPC evolution. Furthermore, we highlight these changes in the context of mRNA export and consider how this process may have influenced NPC diversity. We reveal the NPC as a platform for continual evolution and adaptation.


2021 ◽  
Author(s):  
Evgeniya Trofimenko ◽  
Yuta Homma ◽  
Mitsunori Fukuda ◽  
Christian Widmann

Cells can endocytose material from the surrounding environment. Endocytosis and endosome dynamics are controlled by proteins of the small GTPase Rab family. Several endocytosis pathways have been described (e.g. clathrin-mediated endocytosis, macropinocytosis, CLIC/GEEC pathway). Besides possible recycling routes to the plasma membrane and various organelles, these pathways all appear to funnel the endocytosed material to Rab5-positive early endosomes that then mature into Rab7-positive late endosomes/lysosomes. By studying the uptake of a series of cell-penetrating peptides (CPPs) used in research and clinic, we have discovered a second endocytic pathway that moves material to late endosomes/lysosomes and that is fully independent of Rab5 and Rab7 but requires the Rab14 protein. This newly identified pathway differs from the conventional Rab5-dependent endocytosis at the stage of vesicle formation already and is not affected by a series of compounds that inhibit the Rab5-dependent pathway. The Rab14-dependent pathway is also used by physiological cationic molecules such as polyamines and homeodomains found in homeoproteins. Rab14 is expressed by the last eukaryotic common ancestor. The Rab14-dependent pathway may therefore correspond to a primordial endosomal pathway taken by cationic cargos.


2020 ◽  
Vol 12 (12) ◽  
pp. 2196-2210
Author(s):  
Agnes K M Weiner ◽  
Mario A Cerón-Romero ◽  
Ying Yan ◽  
Laura A Katz

Abstract Epigenetic processes in eukaryotes play important roles through regulation of gene expression, chromatin structure, and genome rearrangements. The roles of chromatin modification (e.g., DNA methylation and histone modification) and non-protein-coding RNAs have been well studied in animals and plants. With the exception of a few model organisms (e.g., Saccharomyces and Plasmodium), much less is known about epigenetic toolkits across the remainder of the eukaryotic tree of life. Even with limited data, previous work suggested the existence of an ancient epigenetic toolkit in the last eukaryotic common ancestor. We use PhyloToL, our taxon-rich phylogenomic pipeline, to detect homologs of epigenetic genes and evaluate their macroevolutionary patterns among eukaryotes. In addition to data from GenBank, we increase taxon sampling from understudied clades of SAR (Stramenopila, Alveolata, and Rhizaria) and Amoebozoa by adding new single-cell transcriptomes from ciliates, foraminifera, and testate amoebae. We focus on 118 gene families, 94 involved in chromatin modification and 24 involved in non-protein-coding RNA processes based on the epigenetics literature. Our results indicate 1) the presence of a large number of epigenetic gene families in the last eukaryotic common ancestor; 2) differential conservation among major eukaryotic clades, with a notable paucity of genes within Excavata; and 3) punctate distribution of epigenetic gene families between species consistent with rapid evolution leading to gene loss. Together these data demonstrate the power of taxon-rich phylogenomic studies for illuminating evolutionary patterns at scales of >1 billion years of evolution and suggest that macroevolutionary phenomena, such as genome conflict, have shaped the evolution of the eukaryotic epigenetic toolkit.


Author(s):  
Violette Da Cunha ◽  
Morgan Gaia ◽  
Hiroyuki Ogata ◽  
Olivier Jaillon ◽  
Tom O. Delmont ◽  
...  

Actin is a major component of the eukaryotic cytoskeleton. Many related actin homologues can be found in eukaryotes1, some of them being present in most or all eukaryotic lineages. The gene repertoire of the Last Eukaryotic Common Ancestor (LECA) therefore would have harbored both actin and various actin-related proteins (ARPs). A current hypothesis is that the different ARPs originated by gene duplication in the proto-eukaryotic lineage from an actin gene that was inherited from Asgard archaea. Here, we report the first detection of actin-related genes in viruses (viractins), encoded by 19 genomes belonging to the Imitervirales, a viral order encompassing the giant Mimiviridae. Most viractins were closely related to the actin, contrasting with actin-related genes of Asgard archaea and Bathyarchaea (a newly discovered clade). Our phylogenetic analysis suggests viractins could have been acquired from proto-eukaryotes and possibly gave rise to the conventional eukaryotic actin after being reintroduced into the pre-LECA eukaryotic lineage.


2020 ◽  
Author(s):  
Karolina Spustova ◽  
Elif Senem Köksal ◽  
Alar Ainla ◽  
Irep Gözen

Membrane enclosed intracellular compartments have been exclusively associated with the eukaryotes, represented by the highly compartmentalized last eukaryotic common ancestor. Recent evidence showing the presence of membranous compartments with specific functions in archaea and bacteria makes it conceivable that the last universal common ancestor and its hypothetical precursor, the protocell, could have exhibited compartmentalization. To our knowledge, there are no experimental studies yet that have tested this hypothesis. We report on an autonomous subcompartmentalization mechanism for protocells which results in the transformation of initial subcompartments to daughter protocells. The process is solely determined by the fundamental materials properties and interfacial events, and do not require biological machinery or chemical energy supply. In the light of our findings, we propose that similar events could have taken place under early Earth conditions, leading to the development of compartmentalized cells and potentially, primitive division.


Author(s):  
Leny M. van Wijk ◽  
Berend Snel

AbstractEukaryotic Protein Kinases (ePKs) are essential for eukaryotic cell signalling. Several phylogenetic trees of the ePK repertoire of single eukaryotes have been published, including the human kinome tree. However, a eukaryote-wide kinome tree was missing due to the large number of kinases in eukaryotes. Using a pipeline that overcomes this problem, we present here the first eukaryotic kinome tree. The tree reveals that the Last Eukaryotic Common Ancestor (LECA) possessed at least 92 ePKs, much more than previously thought. The retention of these LECA ePKs in present-day species is highly variable. Fourteen human kinases with unresolved placement in the human kinome tree were found to originate from three known ePK superfamilies. Further analysis of ePK superfamilies shows that they exhibit markedly diverse evolutionary dynamics between the LECA and present-day eukaryotes. The eukaryotic kinome tree thus unveils the evolutionary history of ePKs, but the tree also enables the transfer of functional information between related kinases.


2019 ◽  
Author(s):  
Eric Hugoson ◽  
Tea Ammunét ◽  
Lionel Guy

AbstractBacteria adapting to living in a host cell caused the most salient events in the evolution of eukaryotes, namely the seminal fusion with an archaeon 1, and the emergence of both the mitochondrion and the chloroplast 2. A bacterial clade that may hold the key to understanding these events is the deep-branching gammaproteobacterial order Legionellales – containing among others Coxiella and Legionella – of which all known members grow inside eukaryotic cells 3. Here, by analyzing 35 novel Legionellales genomes mainly acquired through metagenomics, we show that this group is much more diverse than previously thought, and that key host-adaptation events took place very early in its evolution. Crucial virulence factors like the Type IVB secretion (Dot/Icm) system and two shared effector proteins were gained in the last Legionellales common ancestor (LLCA), while many metabolic gene families were lost in LLCA and its immediate descendants. We estimate that LLCA lived circa 2.4 Ga ago, predating the last eukaryotic common ancestor (LECA) by at least 0.5 Ga 4. These elements strongly indicate that host-adaptation arose only once in Legionellales, and that these bacteria were using advanced molecular machinery to exploit and manipulate host cells very early in eukaryogenesis.


Sign in / Sign up

Export Citation Format

Share Document